Home
Class 12
MATHS
Let f:[0,1]to R be a continuous function...

Let `f:[0,1]to R` be a continuous function then the maximum value of `int_(0)^(1)f(x).x^(2)dx-int_(0)^(1)x.(f(x))^(2)dx` for all such function(s) is:

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \[ I = \int_0^1 f(x) x^2 \, dx - \int_0^1 x (f(x))^2 \, dx \] for a continuous function \( f: [0, 1] \to \mathbb{R} \), we will use the Cauchy-Schwarz inequality. ### Step 1: Apply Cauchy-Schwarz Inequality Using the Cauchy-Schwarz inequality, we have: \[ \left( \int_0^1 f(x) x^2 \, dx \right)^2 \leq \left( \int_0^1 (f(x))^2 \, dx \right) \left( \int_0^1 x^4 \, dx \right) \] ### Step 2: Calculate the Integral of \( x^4 \) First, we calculate \( \int_0^1 x^4 \, dx \): \[ \int_0^1 x^4 \, dx = \left[ \frac{x^5}{5} \right]_0^1 = \frac{1}{5} \] ### Step 3: Substitute into Cauchy-Schwarz Inequality Substituting this into the inequality gives: \[ \left( \int_0^1 f(x) x^2 \, dx \right)^2 \leq \left( \int_0^1 (f(x))^2 \, dx \right) \cdot \frac{1}{5} \] ### Step 4: Rearranging the Inequality Rearranging gives: \[ \int_0^1 f(x) x^2 \, dx \leq \frac{1}{\sqrt{5}} \sqrt{\int_0^1 (f(x))^2 \, dx} \] ### Step 5: Consider the Expression \( I \) Now we need to consider the expression for \( I \): \[ I = \int_0^1 f(x) x^2 \, dx - \int_0^1 x (f(x))^2 \, dx \] ### Step 6: Maximizing \( I \) To maximize \( I \), we can assume \( f(x) = kx \) for some constant \( k \). Then we have: \[ \int_0^1 f(x) x^2 \, dx = k \int_0^1 x^3 \, dx = k \cdot \frac{1}{4} \] And, \[ \int_0^1 x (f(x))^2 \, dx = \int_0^1 x (k^2 x^2) \, dx = k^2 \int_0^1 x^3 \, dx = k^2 \cdot \frac{1}{4} \] Thus, substituting these into \( I \): \[ I = k \cdot \frac{1}{4} - k^2 \cdot \frac{1}{4} = \frac{1}{4} (k - k^2) \] ### Step 7: Find the Maximum of \( \frac{1}{4} (k - k^2) \) To maximize \( \frac{1}{4} (k - k^2) \), we can differentiate: \[ \frac{d}{dk} \left( k - k^2 \right) = 1 - 2k \] Setting this equal to zero gives: \[ 1 - 2k = 0 \implies k = \frac{1}{2} \] ### Step 8: Calculate the Maximum Value of \( I \) Substituting \( k = \frac{1}{2} \) back into \( I \): \[ I = \frac{1}{4} \left( \frac{1}{2} - \left( \frac{1}{2} \right)^2 \right) = \frac{1}{4} \left( \frac{1}{2} - \frac{1}{4} \right) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16} \] ### Conclusion Thus, the maximum value of \[ \int_0^1 f(x) x^2 \, dx - \int_0^1 x (f(x))^2 \, dx \] is \[ \boxed{\frac{1}{16}}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

Let f : [0, 1] rarr [0, 1] be a continuous function such that f (f (x))=1 for all x in[0,1] then:

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Suppose f is continuous on [a,b] & f(a)=f(b)=0 & int_(a)^(b)f^(2)(x)dx=1 then the minimum value of int_(a)^(0)(f^(')(x))^(2)dx int_(a)^(b) x^(2)f^(2)(x)dx is k , then 8k is

int_(-a)^(a)f(x)dx=0 if f(x) is __________ function.

If a continuous function f on [0,a] satisfies f(x)f(a-x)=1,agt0 , then find the value of int_(0)^(a)(dx)/(1+f(x)) .

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. about to only mathematics

    Text Solution

    |

  2. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  3. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  4. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  5. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  6. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  7. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  8. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  9. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  10. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  11. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  12. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  13. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  14. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  15. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |

  16. Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0.If ...

    Text Solution

    |

  17. If the area enclosed by the curve y^(2)=4x and 16y^(2)=5(x-1)^(3) can...

    Text Solution

    |

  18. Let f(x)=x-x^(2) and g(x)=ax. If the area bounded by f(x) and g(x) is...

    Text Solution

    |

  19. Let An be the area bounded by the curve y = x^n(n>=1) and the line x=...

    Text Solution

    |

  20. If int(0)^(1)[4x^(3)-f(x)dx=(4)/(7)] then find the area of region boun...

    Text Solution

    |