Home
Class 12
MATHS
Let f(x) be a real valued function such ...

Let f(x) be a real valued function such that `f(x)=f(121/x), AA x>0`.If `int_1^11 f(x)/xdx=5`, then the value of `int_1^121f(x)/xdx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions and work through the integration step by step. ### Step 1: Understand the given function and integral We are given that \( f(x) = f\left(\frac{121}{x}\right) \) for \( x > 0 \) and that: \[ \int_1^{11} \frac{f(x)}{x} \, dx = 5 \] We need to find the value of: \[ \int_1^{121} \frac{f(x)}{x} \, dx \] ### Step 2: Break the integral into two parts We can split the integral from 1 to 121 into two parts: \[ \int_1^{121} \frac{f(x)}{x} \, dx = \int_1^{11} \frac{f(x)}{x} \, dx + \int_{11}^{121} \frac{f(x)}{x} \, dx \] Let: \[ I = \int_1^{121} \frac{f(x)}{x} \, dx \] Then we can write: \[ I = \int_1^{11} \frac{f(x)}{x} \, dx + \int_{11}^{121} \frac{f(x)}{x} \, dx \] From the given information, we know: \[ \int_1^{11} \frac{f(x)}{x} \, dx = 5 \] So we have: \[ I = 5 + \int_{11}^{121} \frac{f(x)}{x} \, dx \] ### Step 3: Change of variables in the second integral For the integral from 11 to 121, we will use the property of the function \( f(x) \): \[ \int_{11}^{121} \frac{f(x)}{x} \, dx = \int_{11}^{121} \frac{f\left(\frac{121}{x}\right)}{x} \, dx \] Now, we will perform a change of variable. Let: \[ x = \frac{121}{t} \quad \text{then} \quad dx = -\frac{121}{t^2} \, dt \] When \( x = 11 \), \( t = \frac{121}{11} = 11 \) and when \( x = 121 \), \( t = 1 \). Thus, the limits change from 11 to 1. Substituting these into the integral gives us: \[ \int_{11}^{121} \frac{f\left(\frac{121}{x}\right)}{x} \, dx = \int_{11}^{1} \frac{f(t)}{\frac{121}{t}} \left(-\frac{121}{t^2}\right) dt \] This simplifies to: \[ \int_{1}^{11} \frac{f(t)}{t} \, dt \] ### Step 4: Substitute back into the integral Thus, we find: \[ \int_{11}^{121} \frac{f(x)}{x} \, dx = \int_{1}^{11} \frac{f(t)}{t} \, dt = 5 \] ### Step 5: Combine results Now substituting back into our expression for \( I \): \[ I = 5 + 5 = 10 \] ### Final Answer Therefore, the value of \( \int_1^{121} \frac{f(x)}{x} \, dx \) is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=min{|x-1|,|x|,|x+1|, then the value of int_-1^1 f(x)dx is equal to

A continuous real function f satisfies f(2x)=3(f(x)) AA x in R . If int_0^1 f(x)dx=1, then find the value of int_1^2f(x)dx .

Let f(x) be a function satisying f(x) = f((100)/(x)) AA x ge 0 . If int_(1)^(10) (f(x))/(x) dx = 5 then find the value of int_(1)^(100)(f(x))/(x) dx .

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let f(x) be a differentiable function on R such that f'(5-x)= f'(x)AA x in[0,5] with f(0)=-10& f(5)=50 ,then the value of 5int_(0)^(5)f(x)dx

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

If f(x) is a real valued function such that f(x + 6) - f(x + 3) + f(x) = 0, AA x in R , then period of f(x) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. about to only mathematics

    Text Solution

    |

  2. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  3. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  4. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  5. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  6. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  7. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  8. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  9. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  10. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  11. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  12. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  13. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  14. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  15. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |

  16. Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0.If ...

    Text Solution

    |

  17. If the area enclosed by the curve y^(2)=4x and 16y^(2)=5(x-1)^(3) can...

    Text Solution

    |

  18. Let f(x)=x-x^(2) and g(x)=ax. If the area bounded by f(x) and g(x) is...

    Text Solution

    |

  19. Let An be the area bounded by the curve y = x^n(n>=1) and the line x=...

    Text Solution

    |

  20. If int(0)^(1)[4x^(3)-f(x)dx=(4)/(7)] then find the area of region boun...

    Text Solution

    |