Home
Class 12
MATHS
Let An be the area bounded by the curve...

Let `A_n` be the area bounded by the curve `y = x^n(n>=1)` and the line `x=0, y = 0 and x =1/2`.If `sum_(n=1)^n (2^n A_n)/n=1/3` then find the value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the area \( A_n \) bounded by the curve \( y = x^n \), the lines \( x = 0 \), \( y = 0 \), and \( x = \frac{1}{2} \), and then use the given summation condition to find the value of \( n \). ### Step 1: Determine the area \( A_n \) The area \( A_n \) can be calculated using the definite integral: \[ A_n = \int_0^{1/2} x^n \, dx \] ### Step 2: Evaluate the integral To evaluate the integral, we apply the power rule for integration: \[ A_n = \left[ \frac{x^{n+1}}{n+1} \right]_0^{1/2} \] Calculating this gives: \[ A_n = \frac{(1/2)^{n+1}}{n+1} - 0 = \frac{1}{2^{n+1}(n+1)} \] ### Step 3: Substitute \( A_n \) into the summation We are given the equation: \[ \sum_{n=1}^{N} \frac{2^n A_n}{n} = \frac{1}{3} \] Substituting \( A_n \): \[ \sum_{n=1}^{N} \frac{2^n \cdot \frac{1}{2^{n+1}(n+1)}}{n} = \frac{1}{3} \] This simplifies to: \[ \sum_{n=1}^{N} \frac{1}{2(n+1)n} = \frac{1}{3} \] ### Step 4: Simplify the summation We can rewrite \( \frac{1}{2(n+1)n} \) as: \[ \frac{1}{2} \left( \frac{1}{n} - \frac{1}{n+1} \right) \] Thus, the summation becomes: \[ \frac{1}{2} \sum_{n=1}^{N} \left( \frac{1}{n} - \frac{1}{n+1} \right) \] This is a telescoping series, which simplifies to: \[ \frac{1}{2} \left( 1 - \frac{1}{N+1} \right) \] ### Step 5: Set the equation equal to \( \frac{1}{3} \) Now we set the expression equal to \( \frac{1}{3} \): \[ \frac{1}{2} \left( 1 - \frac{1}{N+1} \right) = \frac{1}{3} \] ### Step 6: Solve for \( N \) Multiplying both sides by 2: \[ 1 - \frac{1}{N+1} = \frac{2}{3} \] Rearranging gives: \[ \frac{1}{N+1} = 1 - \frac{2}{3} = \frac{1}{3} \] Taking the reciprocal: \[ N + 1 = 3 \implies N = 2 \] ### Conclusion Thus, the value of \( n \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|64 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If A_n be the area bounded by the curve y=(tanx)^n and the lines x=0,\ y=0,\ x=pi//4 , then for n > 2.

If in an AP a=15, d=-3 and a_n=0 . Then find the value of n.

Let A_n be the area bounded by the curve y=(tanx)^n and the lines x=0,y=0, and x=pi/4dot Prove that for n >2,A_n+A_(n-2)=1/(n-1) and deduce 1/(2n+2)

If a_n=sin((npi)/6) then the value of sum a_n^2

If the area bounded by the curve y=cos^-1(cosx) and y=|x-pi| is pi^2/n , then n is equal to…

If A(n) represents the area bounded by the curve y=n*ln x ,where n in N and n >1, the x-axis and the lines x=1 and x=e , then the value of A(n)+n A(n-1) is equal to a. (n^2)/(e+1) b. (n^2)/(e-1) c. n^2 d. en^2

The means and variance of n observations x_(1),x_(2),x_(3),…x_(n) are 0 and 5 respectively. If sum_(i=1)^(n) x_(i)^(2) = 400 , then find the value of n

Let a_n=1000^n/(n!) for n in N , then a_n is greatest, when value of n is

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n

Let {a_n}(ngeq1) be a sequence such that a_1=1,a n d3a_(n+1)-3a_n=1 for all ngeq1. Then find the value of a_(2002.)

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -Level - 1
  1. about to only mathematics

    Text Solution

    |

  2. If x=int(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(...

    Text Solution

    |

  3. IfAn=int0^(pi/2)(sin(2n-1)x)/(sinx)dx ,bn=int0^(pi/2)((sinn x)/(sinx))...

    Text Solution

    |

  4. Let u=int0^1("ln"(x+1))/(x^2+1)dxa n dv=int0^(pi/2)ln(sin2x)dx ,t h e ...

    Text Solution

    |

  5. Find Lim {x->oo}{ (1+1/(n^2))^(2/n^2)(1+4/(n^2))^(4/n^2).....(1+(n^2)/...

    Text Solution

    |

  6. The freezing point of an aqueous solution of KCN containing 0.1892" m...

    Text Solution

    |

  7. The value of underset (nrarrinfty)(lim)("sin"(pi)/(2n)."sin"(2pi)/(2n)...

    Text Solution

    |

  8. The area bounded by the curve y = cos^(-1) (cos x) and y = | x - pi| i...

    Text Solution

    |

  9. A point P moves in XY-plane in such a way that [|x|]+[|y|]=1, where [....

    Text Solution

    |

  10. If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6)...

    Text Solution

    |

  11. A function f(x) satisfie f(x)=f((c)/(x)) for some real number c( gt 1)...

    Text Solution

    |

  12. If 2int0^1 tan^(-1)x dx= int0^1 cot^(-1)(1-x+x^2) dx then int0^1 tan^(...

    Text Solution

    |

  13. Let f:[0,1]to R be a continuous function then the maximum value of in...

    Text Solution

    |

  14. Find the number of values of x satisfying int(0)^(x)t^(2)sin (x-t)dt=x...

    Text Solution

    |

  15. If the value of definite integral int(0)^(2)(ax +b)/((x^(2)+5x+6)^(2)...

    Text Solution

    |

  16. Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0.If ...

    Text Solution

    |

  17. If the area enclosed by the curve y^(2)=4x and 16y^(2)=5(x-1)^(3) can...

    Text Solution

    |

  18. Let f(x)=x-x^(2) and g(x)=ax. If the area bounded by f(x) and g(x) is...

    Text Solution

    |

  19. Let An be the area bounded by the curve y = x^n(n>=1) and the line x=...

    Text Solution

    |

  20. If int(0)^(1)[4x^(3)-f(x)dx=(4)/(7)] then find the area of region boun...

    Text Solution

    |