Home
Class 12
MATHS
If f(x)={e^(cosxsinx ,for|x|lt=2)2,ot h ...

If `f(x)={e^(cosxsinx ,for|x|lt=2)2,ot h e r w i s e ,t h e nint_(-2)^3f(x)dx=` 0 (b) 1 (c) 2 (d) 3

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-2}^{3} f(x) \, dx \) where \[ f(x) = \begin{cases} e^{\cos(x)} \sin(x) & \text{for } |x| \leq 2 \\ 2 & \text{otherwise} \end{cases} \] we will break the integral into two parts: from \(-2\) to \(2\) and from \(2\) to \(3\). ### Step 1: Break the Integral We can express the integral as: \[ \int_{-2}^{3} f(x) \, dx = \int_{-2}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx \] ### Step 2: Evaluate the First Integral For the first integral, since \( |x| \leq 2 \), we have: \[ \int_{-2}^{2} f(x) \, dx = \int_{-2}^{2} e^{\cos(x)} \sin(x) \, dx \] ### Step 3: Check if \( f(x) \) is Odd To evaluate this integral, we need to check if \( f(x) \) is an odd function. We compute \( f(-x) \): \[ f(-x) = e^{\cos(-x)} \sin(-x) = e^{\cos(x)} (-\sin(x)) = -e^{\cos(x)} \sin(x) = -f(x) \] Since \( f(-x) = -f(x) \), \( f(x) \) is an odd function. ### Step 4: Evaluate the Integral from \(-2\) to \(2\) For an odd function, the integral over a symmetric interval around zero is zero: \[ \int_{-2}^{2} f(x) \, dx = 0 \] ### Step 5: Evaluate the Second Integral Now, we evaluate the second integral from \(2\) to \(3\): \[ \int_{2}^{3} f(x) \, dx = \int_{2}^{3} 2 \, dx \] This integral simplifies to: \[ = 2 \int_{2}^{3} 1 \, dx = 2 [x]_{2}^{3} = 2(3 - 2) = 2 \] ### Step 6: Combine the Results Now we combine the results from both integrals: \[ \int_{-2}^{3} f(x) \, dx = 0 + 2 = 2 \] ### Final Answer Thus, the value of the integral \( \int_{-2}^{3} f(x) \, dx \) is \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

If f(x+2a)=f(x-2a),t h e np rov et h a tf(x)i sp e r iod i cdot

If f(x)=cos^2x+s e c^2x ,t h e n (a) f(x)<1 (b) f(x)=1 (c) 2ltf(x)<1 (d) """"f(x)ge2

Let A=a_0 be a matrix of order 3, where a_(i j)=x ; ifi=j ,x in R, 1 if|i-j|=1, 0;ot h e r w i s e then when of the following Hold (s) good: for x=2 , (a) A is a diagonal matrix (b) A is a symmetric matrix for x=2 , (c) det A has the value equal to 6 (d) Let f(x)= , det A , then the function f(x) has both the maxima and minima.

"I f"f(x)={([tanx])/([x]),[x]!=0 0,[x]=0,"w h e r e"[dot]=G I F ,"t h e n" ("lim")_(xvec0^-)f(x)=1 (b) ("lim")_(xvec0^+)f(x)=1 ("lim")_(xvec0^+)f(x)=0 (d) f(0)=0

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

If f(x)=cos^2x+s e c^2x ,t h e n f(x)<1 (b) f(x)=1 (c) 2ltf(x)<1 (d) """"f(x)ge2

Let f be a positive function. Let I_1=int_(1-k)^k xf([x(1-x)])dx , I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s 2 (b) k (c) 1/2 (d) 1

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to : (a) 0 (b) 2e (c) 2e^2 -2 (d) e^2-e

If f(x)=(sin3x)/x,w h e nx!=0, f(x)= 1,w h e n x=0 Find whether f(x) is continuous at x=0

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Main (Archive)
  1. The integral int(-1/2)^(1/2) ([x]+1n((1+x)/(1-x)))dx is equal to (wher...

    Text Solution

    |

  2. Find the value of int(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx, agt0.

    Text Solution

    |

  3. If f(x)={e^(cosxsinx ,for|x|lt=2)2,ot h e r w i s e ,t h e nint(-2)^3f...

    Text Solution

    |

  4. The value of the integral int (e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

    Text Solution

    |

  5. int(pi //4)^(3pi//4) (dx)/( 1+ cosx) is equal to

    Text Solution

    |

  6. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  7. Evaluate the following integral: int0^(pi//2)(sqrt(cotx))/(sqrt(cotx\ ...

    Text Solution

    |

  8. Let T >0 be a fixed real number. Suppose f is continuous function such...

    Text Solution

    |

  9. The intercepts on x- axis made by tangents to the curve, y=int(0)^(x)|...

    Text Solution

    |

  10. Ifint(sinx)^1t^2f(t)dt=1-sinx ,w h e r e .x in (0,pi/2), then find th...

    Text Solution

    |

  11. If f(x) is differentiable and int0^(t^2) x f(x) dx=2/5t^5, then f(4/(2...

    Text Solution

    |

  12. If f(x)=int(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

    Text Solution

    |

  13. If I(m,n)=int0^1 t^m(1+t)^n.dt, then the expression for I(m,n) in term...

    Text Solution

    |

  14. Let f(x)=int(1)^(x) sqrt(2-t^(2)) dt, then the real roots of the equa...

    Text Solution

    |

  15. Let f: (0, infty) rarr R and F (x) = int(0) ^(x) f(t) dt . If F(x^(2)...

    Text Solution

    |

  16. The area of the quadrilateral formed by the tangents at the endpoint o...

    Text Solution

    |

  17. The area bounded by the curves y = |x| - 1 and y = -|x| +1 is equal to

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. int(-1)^(1)(x^2+1)dx is equal to

    Text Solution

    |

  20. The area (in sq. units) of the region described by {x,y):y^(2)le2x and...

    Text Solution

    |