Home
Class 12
MATHS
The value of int(0)^(pi)|cos x|^(3)dx is...

The value of `int_(0)^(pi)|cos x|^(3)dx` is :

A

0

B

`-(4)/(3)`

C

`(4)/(3)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} |\cos x|^3 \, dx \), we will break it down into manageable steps. ### Step 1: Analyze the behavior of \(\cos x\) The function \(\cos x\) is positive in the interval \([0, \frac{\pi}{2}]\) and negative in the interval \([\frac{\pi}{2}, \pi]\). Therefore, we can express the absolute value of \(\cos x\) as: \[ |\cos x| = \begin{cases} \cos x & \text{for } 0 \leq x \leq \frac{\pi}{2} \\ -\cos x & \text{for } \frac{\pi}{2} < x \leq \pi \end{cases} \] ### Step 2: Set up the integral We can split the integral into two parts: \[ I = \int_{0}^{\pi} |\cos x|^3 \, dx = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx + \int_{\frac{\pi}{2}}^{\pi} (-\cos x)^3 \, dx \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx - \int_{\frac{\pi}{2}}^{\pi} \cos^3 x \, dx \] ### Step 3: Change of variable for the second integral For the second integral, we can change the variable. Let \( t = \pi - x \). Then \( dt = -dx \), and the limits change as follows: - When \( x = \frac{\pi}{2} \), \( t = \frac{\pi}{2} \) - When \( x = \pi \), \( t = 0 \) Thus, we have: \[ \int_{\frac{\pi}{2}}^{\pi} \cos^3 x \, dx = \int_{\frac{\pi}{2}}^{0} \cos^3(\pi - t)(-dt) = \int_{0}^{\frac{\pi}{2}} (-\cos t)^3 \, dt = -\int_{0}^{\frac{\pi}{2}} \cos^3 t \, dt \] ### Step 4: Combine the integrals Now substituting back into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx - (-\int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx) = 2 \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx \] ### Step 5: Evaluate \(\int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx\) To evaluate \(\int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx\), we can use the reduction formula: \[ \int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx \] For \( n = 3 \): \[ \int \cos^3 x \, dx = \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \int \cos x \, dx \] Now, we know: \[ \int \cos x \, dx = \sin x \] Thus: \[ \int \cos^3 x \, dx = \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \sin x \] Evaluating from \(0\) to \(\frac{\pi}{2}\): \[ \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx = \left[ \frac{1}{3} \cos^2 x \sin x + \frac{2}{3} \sin x \right]_{0}^{\frac{\pi}{2}} = \left[ 0 + \frac{2}{3} \cdot 1 \right] - \left[ \frac{1}{3} \cdot 1 \cdot 0 + 0 \right] = \frac{2}{3} \] ### Step 6: Final Calculation Substituting back into our expression for \(I\): \[ I = 2 \int_{0}^{\frac{\pi}{2}} \cos^3 x \, dx = 2 \cdot \frac{2}{3} = \frac{4}{3} \] Thus, the value of the integral \( \int_{0}^{\pi} |\cos x|^3 \, dx \) is: \[ \boxed{\frac{4}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi)abscosx^3dx is

int_(0)^(50pi)| cos x|dx=

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(0)^(2pi) cos^(99)x dx , is

The value of int_(0)^(2pi) |cos x -sin x|dx is

Evaluate : int_(0)^(pi) |cos x| dx

int_(0)^(pi//2) cos 3x dx

Evaluate int_(0)^(4pi)|cos x| dx .

int_(0)^(pi/2) cos 2x dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Main (Archive)
  1. about to only mathematics

    Text Solution

    |

  2. The area (in sq. units) bounded by the parabola y=x^2-1, the tangent a...

    Text Solution

    |

  3. The value of int(0)^(pi)|cos x|^(3)dx is :

    Text Solution

    |

  4. The area of the region A={(x,y), 0 le y le x|x|+1 and -1 le x le 1} in...

    Text Solution

    |

  5. underset0overset(pi/3)int tantheta/(sqrt(2ksectheta))d theta=1-1/sqrt2...

    Text Solution

    |

  6. Let f be a differentiable function from R to R such that |f(x) - f(y)...

    Text Solution

    |

  7. Let I=undersetaoversetbint(x^4-2x^2)dx. If is minimum, then the ordere...

    Text Solution

    |

  8. If the area enclosed between the curves y=kx^2 and x=ky^2, where kgt0,...

    Text Solution

    |

  9. If int(0)^(x)f(t)dt=x^2+int+(x)^(1)t^2f(t)dt, then f((1)/(2)) is equal...

    Text Solution

    |

  10. The value of underset(-pi//2)overset(pi//2)intdx/([x]+[sinx]+4) where ...

    Text Solution

    |

  11. Using integration, find the area bounded by the curve x^2=4y and the l...

    Text Solution

    |

  12. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  13. The integral int(pi//6)^(pi//4)dx/(sin2x(tan^5x+cot^5x))equal

    Text Solution

    |

  14. The area (in sq. units) of the region bounded by the parabola y=x^2+2"...

    Text Solution

    |

  15. Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" an...

    Text Solution

    |

  16. The integral underset1overseteint{(x/e)^(2x)-(e/x)^x}logexdx is equal ...

    Text Solution

    |

  17. The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, ...

    Text Solution

    |

  18. If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"(e)x, (xgt0) then the value ...

    Text Solution

    |

  19. Let f ( x) = int 0 ^ x g (t) dt , where g is a non - ze...

    Text Solution

    |

  20. Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is a...

    Text Solution

    |