Home
Class 12
MATHS
The area of the region A={(x,y), 0 le y ...

The area of the region `A={(x,y), 0 le y le x|x|+1 and -1 le x le 1}` in sq. units, is

A

2

B

`(1)/(3)`

C

`(4)/(3)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region \( A = \{(x,y) : 0 \leq y \leq x|x| + 1 \text{ and } -1 \leq x \leq 1\} \), we can follow these steps: ### Step 1: Understand the bounds of the region The region is defined by the inequalities: - \( 0 \leq y \leq x|x| + 1 \) - \( -1 \leq x \leq 1 \) ### Step 2: Analyze the function \( y = x|x| + 1 \) The function \( x|x| \) can be expressed as: - \( x^2 \) when \( x \geq 0 \) - \( -x^2 \) when \( x < 0 \) Thus, we can rewrite the function: - For \( x \geq 0 \): \( y = x^2 + 1 \) - For \( x < 0 \): \( y = -x^2 + 1 \) ### Step 3: Determine the area under the curves We will calculate the area in two parts: from \( -1 \) to \( 0 \) and from \( 0 \) to \( 1 \). #### Part 1: Area from \( -1 \) to \( 0 \) Here, the upper curve is \( y = -x^2 + 1 \). The area \( A_1 \) can be calculated as: \[ A_1 = \int_{-1}^{0} (-x^2 + 1) \, dx \] Calculating the integral: \[ A_1 = \int_{-1}^{0} (-x^2 + 1) \, dx = \left[-\frac{x^3}{3} + x\right]_{-1}^{0} \] Evaluating the limits: \[ = \left[-\frac{0^3}{3} + 0\right] - \left[-\frac{(-1)^3}{3} + (-1)\right] \] \[ = 0 - \left[\frac{1}{3} - 1\right] = 0 - \left[\frac{1}{3} - \frac{3}{3}\right] = 0 - \left[-\frac{2}{3}\right] = \frac{2}{3} \] #### Part 2: Area from \( 0 \) to \( 1 \) Here, the upper curve is \( y = x^2 + 1 \). The area \( A_2 \) can be calculated as: \[ A_2 = \int_{0}^{1} (x^2 + 1) \, dx \] Calculating the integral: \[ A_2 = \int_{0}^{1} (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x\right]_{0}^{1} \] Evaluating the limits: \[ = \left[\frac{1^3}{3} + 1\right] - \left[\frac{0^3}{3} + 0\right] \] \[ = \left[\frac{1}{3} + 1\right] - 0 = \frac{1}{3} + 1 = \frac{1}{3} + \frac{3}{3} = \frac{4}{3} \] ### Step 4: Total Area The total area \( A \) is the sum of the two areas: \[ A = A_1 + A_2 = \frac{2}{3} + \frac{4}{3} = \frac{6}{3} = 2 \] ### Final Answer The area of the region \( A \) is \( 2 \) square units. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The area of the region R={(x,y)//x^(2)le y le x} is

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

The area of the region R={(x,y):|x| le|y| and x^2+y^2le1} is

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

STATEMENT-1 : The area bounded by the region {(x,y) : 0 le y le x^(2) + 1 , 0 le y le x + 1 , 0 le x le 2} is (23)/(9) sq. units and STATEMENT-2 : Required Area is int_(a)^(b) (y_(2) - y_(1)) dx

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

If the line x = alpha divides the area of region R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1} into two equal parts, then

If the line x= alpha divides the area of region R={(x,y)in R^(2): x^(3) le y le x ,0 le x le 1 } into two equal parts, then

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Main (Archive)
  1. The area (in sq. units) bounded by the parabola y=x^2-1, the tangent a...

    Text Solution

    |

  2. The value of int(0)^(pi)|cos x|^(3)dx is :

    Text Solution

    |

  3. The area of the region A={(x,y), 0 le y le x|x|+1 and -1 le x le 1} in...

    Text Solution

    |

  4. underset0overset(pi/3)int tantheta/(sqrt(2ksectheta))d theta=1-1/sqrt2...

    Text Solution

    |

  5. Let f be a differentiable function from R to R such that |f(x) - f(y)...

    Text Solution

    |

  6. Let I=undersetaoversetbint(x^4-2x^2)dx. If is minimum, then the ordere...

    Text Solution

    |

  7. If the area enclosed between the curves y=kx^2 and x=ky^2, where kgt0,...

    Text Solution

    |

  8. If int(0)^(x)f(t)dt=x^2+int+(x)^(1)t^2f(t)dt, then f((1)/(2)) is equal...

    Text Solution

    |

  9. The value of underset(-pi//2)overset(pi//2)intdx/([x]+[sinx]+4) where ...

    Text Solution

    |

  10. Using integration, find the area bounded by the curve x^2=4y and the l...

    Text Solution

    |

  11. The value of int(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] d...

    Text Solution

    |

  12. The integral int(pi//6)^(pi//4)dx/(sin2x(tan^5x+cot^5x))equal

    Text Solution

    |

  13. The area (in sq. units) of the region bounded by the parabola y=x^2+2"...

    Text Solution

    |

  14. Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" an...

    Text Solution

    |

  15. The integral underset1overseteint{(x/e)^(2x)-(e/x)^x}logexdx is equal ...

    Text Solution

    |

  16. The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, ...

    Text Solution

    |

  17. If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"(e)x, (xgt0) then the value ...

    Text Solution

    |

  18. Let f ( x) = int 0 ^ x g (t) dt , where g is a non - ze...

    Text Solution

    |

  19. Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is a...

    Text Solution

    |

  20. int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

    Text Solution

    |