Home
Class 12
MATHS
The area (in sq. units) of the region A=...

The area (in sq. units) of the region `A={(x,y)in R xx R |0 le x le 3, 0 le y le 4, y le x^(2) + 3x}` is :

A

`(59)/(6)`

B

`(26)/(3)`

C

`(53)/(6)`

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by the inequalities \( A = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 3, 0 \leq y \leq 4, y \leq x^2 + 3x\} \), we can follow these steps: ### Step 1: Identify the boundaries We have the following boundaries from the inequalities: 1. \( x = 0 \) (the y-axis) 2. \( x = 3 \) (a vertical line) 3. \( y = 0 \) (the x-axis) 4. \( y = 4 \) (a horizontal line) 5. \( y = x^2 + 3x \) (a parabola) ### Step 2: Sketch the region We will sketch the region defined by these inequalities on the coordinate plane. The parabola \( y = x^2 + 3x \) opens upwards and intersects the x-axis at points where \( y = 0 \). ### Step 3: Find the intersection points To find the intersection points of the parabola with the line \( y = 4 \): Set \( x^2 + 3x = 4 \): \[ x^2 + 3x - 4 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm 5}{2} \] Calculating the roots: 1. \( x = 1 \) 2. \( x = -4 \) (not in our region since \( x \) must be between 0 and 3) Thus, the intersection point is \( (1, 4) \). ### Step 4: Determine the area The area can be divided into two parts: 1. Area under the parabola from \( x = 0 \) to \( x = 1 \). 2. Area of the rectangle from \( x = 1 \) to \( x = 3 \). #### Area under the parabola (A1): \[ A_1 = \int_0^1 (x^2 + 3x) \, dx \] Calculating the integral: \[ = \left[ \frac{x^3}{3} + \frac{3x^2}{2} \right]_0^1 = \left( \frac{1^3}{3} + \frac{3 \cdot 1^2}{2} \right) - \left( 0 \right) = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{9}{6} = \frac{1}{3} + \frac{3}{2} = \frac{1}{3} + \frac{4.5}{3} = \frac{5.5}{3} = \frac{11}{6} \] #### Area of the rectangle (A2): The rectangle extends from \( x = 1 \) to \( x = 3 \) with height 4. \[ A_2 = \text{width} \times \text{height} = (3 - 1) \times 4 = 2 \times 4 = 8 \] ### Step 5: Total area The total area \( A \) is the sum of \( A_1 \) and \( A_2 \): \[ A = A_1 + A_2 = \frac{11}{6} + 8 = \frac{11}{6} + \frac{48}{6} = \frac{59}{6} \] ### Final Answer The area of the region is \( \frac{59}{6} \) square units. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y):(y^(2))/(2) le x le y+4} is

x - 2y le 4

The area (in sqaure units) of the region {(x,y):x ge 0, x + y le 3, x^(2) le 4y and y le 1 + sqrt(x)} is

x - y le 2

The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)+y^(2) le 4x , x ge 0, y le 0}, is

The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)+y^(2) le 4x , x ge 0, y le 0}, is

STATEMENT-1 : The area bounded by the region {(x,y) : 0 le y le x^(2) + 1 , 0 le y le x + 1 , 0 le x le 2} is (23)/(9) sq. units and STATEMENT-2 : Required Area is int_(a)^(b) (y_(2) - y_(1)) dx

The area of the region A={(x,y), 0 le y le x|x|+1 and -1 le x le 1} in sq. units, is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Main (Archive)
  1. The area (in sq. units) of the region bounded by the parabola y=x^2+2"...

    Text Solution

    |

  2. Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" an...

    Text Solution

    |

  3. The integral underset1overseteint{(x/e)^(2x)-(e/x)^x}logexdx is equal ...

    Text Solution

    |

  4. The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, ...

    Text Solution

    |

  5. If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"(e)x, (xgt0) then the value ...

    Text Solution

    |

  6. Let f ( x) = int 0 ^ x g (t) dt , where g is a non - ze...

    Text Solution

    |

  7. Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is a...

    Text Solution

    |

  8. int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

    Text Solution

    |

  9. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  10. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4))dx is

    Text Solution

    |

  11. The area (in sq. units) of the region A = {(x,y), y^(2)//2 le x le y +...

    Text Solution

    |

  12. The value of int(0)^(2pi)[sin2x (1+cos 3x)]dx, where [t] denotes the g...

    Text Solution

    |

  13. The region represented by |x-y|le 2 and |x +y| le 2 is bounded by a:

    Text Solution

    |

  14. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  15. The area (in sq. units) of the region bounded by the curves y=2^(x) an...

    Text Solution

    |

  16. If int(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n), then m*n is equal ...

    Text Solution

    |

  17. If the area (in sq. units) of the region {(x,y): y^(2) lt= 4x,x+y lt...

    Text Solution

    |

  18. Let f : R to R be a continuously differentiable function such that f(...

    Text Solution

    |

  19. A value of alpha such that int(alpha)^(alpha+1) (dx)/((x+a)(x+...

    Text Solution

    |

  20. If the area (in sq. units) bounded by the parabola y^(2)=4lamdax and t...

    Text Solution

    |