Home
Class 12
MATHS
If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log...

If `f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0)` then the value of the integral `int_(-pi//4)^(pi//4)g(f(x))` dx is

A

`log_(e )2`

B

`log_(e )e`

C

`log_(e )1`

D

`log_(e )3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} g(f(x)) \, dx \), where \( f(x) = \frac{2 - x \cos x}{2 + x \cos x} \) and \( g(x) = \log_e x \), we can follow these steps: ### Step 1: Define the function \( g(f(x)) \) We start by substituting \( f(x) \) into \( g(x) \): \[ g(f(x)) = \log_e\left(\frac{2 - x \cos x}{2 + x \cos x}\right) \] ### Step 2: Evaluate \( g(f(-x)) \) Next, we need to evaluate \( g(f(-x)) \): \[ f(-x) = \frac{2 - (-x) \cos(-x)}{2 + (-x) \cos(-x)} = \frac{2 + x \cos x}{2 - x \cos x} \] Thus, \[ g(f(-x)) = \log_e\left(f(-x)\right) = \log_e\left(\frac{2 + x \cos x}{2 - x \cos x}\right) \] ### Step 3: Relate \( g(f(x)) \) and \( g(f(-x)) \) Now, we can express \( g(f(-x)) \) in terms of \( g(f(x)) \): \[ g(f(-x)) = \log_e\left(\frac{2 + x \cos x}{2 - x \cos x}\right) = -\log_e\left(\frac{2 - x \cos x}{2 + x \cos x}\right) = -g(f(x)) \] ### Step 4: Show that \( g(f(x)) \) is an odd function From the previous step, we see that: \[ g(f(-x)) = -g(f(x)) \] This indicates that \( g(f(x)) \) is an odd function. ### Step 5: Use the property of odd functions in integrals Since \( g(f(x)) \) is an odd function, we can use the property of integrals of odd functions: \[ \int_{-a}^{a} h(x) \, dx = 0 \quad \text{for odd functions} \] Thus, \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} g(f(x)) \, dx = 0 \] ### Conclusion The value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi+x)) cos x dx

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The integral int_(0)^(pi) x f(sinx )dx is equal to

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

The value of int_(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Main (Archive)
  1. The area (in sq. units) of the region bounded by the parabola y=x^2+2"...

    Text Solution

    |

  2. Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" an...

    Text Solution

    |

  3. The integral underset1overseteint{(x/e)^(2x)-(e/x)^x}logexdx is equal ...

    Text Solution

    |

  4. The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, ...

    Text Solution

    |

  5. If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"(e)x, (xgt0) then the value ...

    Text Solution

    |

  6. Let f ( x) = int 0 ^ x g (t) dt , where g is a non - ze...

    Text Solution

    |

  7. Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is a...

    Text Solution

    |

  8. int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

    Text Solution

    |

  9. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  10. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4))dx is

    Text Solution

    |

  11. The area (in sq. units) of the region A = {(x,y), y^(2)//2 le x le y +...

    Text Solution

    |

  12. The value of int(0)^(2pi)[sin2x (1+cos 3x)]dx, where [t] denotes the g...

    Text Solution

    |

  13. The region represented by |x-y|le 2 and |x +y| le 2 is bounded by a:

    Text Solution

    |

  14. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  15. The area (in sq. units) of the region bounded by the curves y=2^(x) an...

    Text Solution

    |

  16. If int(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n), then m*n is equal ...

    Text Solution

    |

  17. If the area (in sq. units) of the region {(x,y): y^(2) lt= 4x,x+y lt...

    Text Solution

    |

  18. Let f : R to R be a continuously differentiable function such that f(...

    Text Solution

    |

  19. A value of alpha such that int(alpha)^(alpha+1) (dx)/((x+a)(x+...

    Text Solution

    |

  20. If the area (in sq. units) bounded by the parabola y^(2)=4lamdax and t...

    Text Solution

    |