Home
Class 12
MATHS
Let f(x,y) = {(x,y): y^(2) le 4x,0 le x...

Let `f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda}` and `s(lambda)` is area such that `(S(lambda))/(S(4)) = (2)/(5)`. Find the value of `lambda`.

A

`4((4)/(25))^((1)/(3))`

B

`2((2)/(5))^((1)/(3))`

C

`2((4)/(25))^((1)/(3))`

D

`4((2)/(5))^((1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the area \( S(\lambda) \) is related to the area \( S(4) \) by the equation: \[ \frac{S(\lambda)}{S(4)} = \frac{2}{5} \] ### Step 1: Determine the area \( S(\lambda) \) The area \( S(\lambda) \) is defined by the region bounded by the parabola \( y^2 = 4x \) and the lines \( x = 0 \) and \( x = \lambda \). The equation of the parabola can be rewritten to express \( y \): \[ y = \pm 2\sqrt{x} \] Thus, the area can be calculated as: \[ S(\lambda) = 2 \int_0^{\lambda} 2\sqrt{x} \, dx \] ### Step 2: Calculate the integral Calculating the integral: \[ S(\lambda) = 2 \int_0^{\lambda} 2\sqrt{x} \, dx = 4 \int_0^{\lambda} \sqrt{x} \, dx \] The integral of \( \sqrt{x} \) is: \[ \int \sqrt{x} \, dx = \frac{2}{3} x^{3/2} \] Thus, we have: \[ S(\lambda) = 4 \left[ \frac{2}{3} x^{3/2} \right]_0^{\lambda} = 4 \cdot \frac{2}{3} \lambda^{3/2} = \frac{8}{3} \lambda^{3/2} \] ### Step 3: Determine the area \( S(4) \) Now, we compute \( S(4) \): \[ S(4) = 4 \int_0^{4} \sqrt{x} \, dx = 4 \cdot \frac{2}{3} [x^{3/2}]_0^{4} = 4 \cdot \frac{2}{3} \cdot (4^{3/2}) = 4 \cdot \frac{2}{3} \cdot 8 = \frac{64}{3} \] ### Step 4: Set up the ratio Now we can set up the equation based on the given ratio: \[ \frac{S(\lambda)}{S(4)} = \frac{2}{5} \] Substituting the values we found: \[ \frac{\frac{8}{3} \lambda^{3/2}}{\frac{64}{3}} = \frac{2}{5} \] This simplifies to: \[ \frac{8 \lambda^{3/2}}{64} = \frac{2}{5} \] ### Step 5: Solve for \( \lambda^{3/2} \) Cross-multiplying gives: \[ 8 \lambda^{3/2} \cdot 5 = 2 \cdot 64 \] This simplifies to: \[ 40 \lambda^{3/2} = 128 \] Dividing both sides by 40: \[ \lambda^{3/2} = \frac{128}{40} = \frac{16}{5} \] ### Step 6: Solve for \( \lambda \) Now, we need to solve for \( \lambda \): \[ \lambda = \left( \frac{16}{5} \right)^{\frac{2}{3}} \] ### Step 7: Simplify \( \lambda \) We can express \( 16 \) as \( 2^4 \): \[ \lambda = \left( \frac{2^4}{5} \right)^{\frac{2}{3}} = \frac{2^{\frac{8}{3}}}{5^{\frac{2}{3}}} \] Thus, the final value of \( \lambda \) is: \[ \lambda = 4 \cdot \left( \frac{2}{5} \right)^{\frac{2}{3}} \] ### Final Answer \[ \lambda = 4 \cdot \left( \frac{2^2}{5^2} \right)^{\frac{1}{3}} = 4 \cdot \frac{4}{25^{\frac{1}{3}}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

If x - lambda is a factor of x^(4)-lambda x^(3)+2x+6 . Then the value of lambda is

x-y le 2, x + y le 4 , x ge 0, y ge 0

If f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda) has a period = pi/2 then find the value of lambda

If the line y=3x+lambda touches the hyperbola 9x^(2)-5y^(2)=45 , then the value of lambda is

If the lines x - 2y - 6 = 0 , 3x + y - 4=0 and lambda x +4y + lambda^(2) = 0 are concurrent , then value of lambda is

x + y le 10, 4x + 3y le 24,x ge 0, y ge 0

If the points (lambda, -lambda) lies inside the circle x^2 + y^2 - 4x + 2y -8=0 , then find the range of lambda .

A system of equations lambdax +y +z =1,x+lambday+z=lambda, x + y + lambdaz = lambda^2 have no solution then value of lambda is

The angle between x^(2)+y^(2)-2x-2y+1=0 and line y=lambda x + 1-lambda , is

If the system of equation x+lambday+1=0,\ lambdax+y+1=0\ &\ x+y+lambda=0.\ is consistent the find the value of lambda

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Main (Archive)
  1. The area (in sq. units) of the region bounded by the parabola y=x^2+2"...

    Text Solution

    |

  2. Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" an...

    Text Solution

    |

  3. The integral underset1overseteint{(x/e)^(2x)-(e/x)^x}logexdx is equal ...

    Text Solution

    |

  4. The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, ...

    Text Solution

    |

  5. If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"(e)x, (xgt0) then the value ...

    Text Solution

    |

  6. Let f ( x) = int 0 ^ x g (t) dt , where g is a non - ze...

    Text Solution

    |

  7. Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is a...

    Text Solution

    |

  8. int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

    Text Solution

    |

  9. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  10. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4))dx is

    Text Solution

    |

  11. The area (in sq. units) of the region A = {(x,y), y^(2)//2 le x le y +...

    Text Solution

    |

  12. The value of int(0)^(2pi)[sin2x (1+cos 3x)]dx, where [t] denotes the g...

    Text Solution

    |

  13. The region represented by |x-y|le 2 and |x +y| le 2 is bounded by a:

    Text Solution

    |

  14. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  15. The area (in sq. units) of the region bounded by the curves y=2^(x) an...

    Text Solution

    |

  16. If int(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n), then m*n is equal ...

    Text Solution

    |

  17. If the area (in sq. units) of the region {(x,y): y^(2) lt= 4x,x+y lt...

    Text Solution

    |

  18. Let f : R to R be a continuously differentiable function such that f(...

    Text Solution

    |

  19. A value of alpha such that int(alpha)^(alpha+1) (dx)/((x+a)(x+...

    Text Solution

    |

  20. If the area (in sq. units) bounded by the parabola y^(2)=4lamdax and t...

    Text Solution

    |