Home
Class 12
MATHS
int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)d...

`int_(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx` is equal to

A

(a) `(pi-2)/(8)`

B

(b) `(pi-2)/(4)`

C

(c) `(pi-1)/(4)`

D

(d) `(pi-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx \), we will use a property of definite integrals and some algebraic manipulation. ### Step 1: Define the integral Let: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx \] ### Step 2: Use the property of integrals Using the property that \( \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \) for \( a = \frac{\pi}{2} \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 3: Simplify using trigonometric identities Using the identities \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos x + \sin x} \, dx \] ### Step 4: Add the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx \) (Equation 1) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\cos^3 x}{\sin x + \cos x} \, dx \) (Equation 2) Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} \, dx \] ### Step 5: Use the identity for \( a^3 + b^3 \) Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x) \] Since \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x) \] ### Step 6: Substitute back into the integral Substituting this back into our equation for \( 2I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x + \cos x)(1 - \sin x \cos x)}{\sin x + \cos x} \, dx \] This simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} (1 - \sin x \cos x) \, dx \] ### Step 7: Split the integral Now we can split this integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx - \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx \] ### Step 8: Evaluate the integrals The first integral: \[ \int_{0}^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2} \] The second integral can be evaluated using the identity \( \sin x \cos x = \frac{1}{2} \sin 2x \): \[ \int_{0}^{\frac{\pi}{2}} \sin x \cos x \, dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2x \, dx = \frac{1}{2} \left[-\frac{1}{2} \cos 2x\right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left[0 - (-\frac{1}{2})\right] = \frac{1}{4} \] ### Step 9: Substitute back to find \( I \) Now substituting back: \[ 2I = \frac{\pi}{2} - \frac{1}{4} \] Thus, \[ 2I = \frac{\pi}{2} - \frac{1}{4} = \frac{2\pi - 1}{4} \] Dividing both sides by 2: \[ I = \frac{2\pi - 1}{8} \] ### Final Result Thus, the final value of the integral is: \[ I = \frac{\pi - \frac{1}{2}}{4} = \frac{\pi - 1}{4} \] ### Conclusion The value of the integral \( \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx \) is: \[ \boxed{\frac{\pi - 1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|103 Videos
  • INTEGRAL CALCULUS - 2

    VMC MODULES ENGLISH|Exercise Level - 1|190 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos

Similar Questions

Explore conceptually related problems

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of int_(0)^(pi//2)(asinx+bcosx)/(sinx+cosx)dx is equal to

For any n in N, int_(0)^(pi) (sin (2n+1)x)/(sinx)dx is equal to

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

int(cos2x)/((sinx+cosx)^(2))dx is equal to

VMC MODULES ENGLISH-INTEGRAL CALCULUS - 2 -JEE Main (Archive)
  1. The area (in sq. units) of the region bounded by the parabola y=x^2+2"...

    Text Solution

    |

  2. Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" an...

    Text Solution

    |

  3. The integral underset1overseteint{(x/e)^(2x)-(e/x)^x}logexdx is equal ...

    Text Solution

    |

  4. The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, ...

    Text Solution

    |

  5. If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"(e)x, (xgt0) then the value ...

    Text Solution

    |

  6. Let f ( x) = int 0 ^ x g (t) dt , where g is a non - ze...

    Text Solution

    |

  7. Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is a...

    Text Solution

    |

  8. int(0)^((pi)/(2))(sin^(3)x)/(sinx+cosx)dx is equal to

    Text Solution

    |

  9. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  10. The value of the integral int(0)^(1)xcot^(-1)(1-x^(2)+x^(4))dx is

    Text Solution

    |

  11. The area (in sq. units) of the region A = {(x,y), y^(2)//2 le x le y +...

    Text Solution

    |

  12. The value of int(0)^(2pi)[sin2x (1+cos 3x)]dx, where [t] denotes the g...

    Text Solution

    |

  13. The region represented by |x-y|le 2 and |x +y| le 2 is bounded by a:

    Text Solution

    |

  14. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here ...

    Text Solution

    |

  15. The area (in sq. units) of the region bounded by the curves y=2^(x) an...

    Text Solution

    |

  16. If int(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n), then m*n is equal ...

    Text Solution

    |

  17. If the area (in sq. units) of the region {(x,y): y^(2) lt= 4x,x+y lt...

    Text Solution

    |

  18. Let f : R to R be a continuously differentiable function such that f(...

    Text Solution

    |

  19. A value of alpha such that int(alpha)^(alpha+1) (dx)/((x+a)(x+...

    Text Solution

    |

  20. If the area (in sq. units) bounded by the parabola y^(2)=4lamdax and t...

    Text Solution

    |