Home
Class 12
CHEMISTRY
Calculate the standard free energy chang...

Calculate the standard free energy change for the formation of methane at `300K`:
`C("graphite") +2H_(2) (g) rarr CH_(4)(g)`
The following data are given:
`Delta_(f)H^(Theta) (kJ mol^(-1)): CH_(4)(g) =- 74.81`
`Delta_(f)S^(Theta)(JK^(-1) mol^(-1)): C("graphite") = 5.70, H_(2)(g) = 130.7 CH_(4)(g) = 186.3`

A

`Delta_(r)G^(@)` is -50.8 kJ and the reactionis driven by enthalpy only

B

`Delta_(r)G^(@)` is`-50.8 kJ` and the reaction is driven by entropy only

C

`Delta_(r)G^(@)` is `+5.0 kJ` and the reaction is driven by enthalpy and entropy

D

`Delta_(r)G^(@)` is `-50.8 kJ` and the reaction is driven by enthalpy and entropy

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard free energy change (ΔG°) for the formation of methane (CH₄) at 300 K from graphite (C) and hydrogen gas (H₂), we will use the following thermodynamic relationship: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] ### Step 1: Calculate ΔH° (Standard Enthalpy Change) The standard enthalpy change for the reaction can be calculated using the formula: \[ \Delta H^\circ = \Delta H_f^\circ (\text{products}) - \Delta H_f^\circ (\text{reactants}) \] For the reaction: \[ C(\text{graphite}) + 2H_2(g) \rightarrow CH_4(g) \] We have: - ΔH_f°(CH₄) = -74.81 kJ/mol - ΔH_f°(C) = 0 kJ/mol (standard state) - ΔH_f°(H₂) = 0 kJ/mol (standard state) Thus, the calculation becomes: \[ \Delta H^\circ = (-74.81) - (0 + 0) = -74.81 \text{ kJ/mol} \] ### Step 2: Calculate ΔS° (Standard Entropy Change) Next, we calculate the standard entropy change using the formula: \[ \Delta S^\circ = S^\circ (\text{products}) - S^\circ (\text{reactants}) \] Given the entropy values: - S°(CH₄) = 186.3 J/(K·mol) - S°(C) = 5.70 J/(K·mol) - S°(H₂) = 130.7 J/(K·mol) The calculation becomes: \[ \Delta S^\circ = 186.3 - (5.70 + 2 \times 130.7) \] Calculating the reactants' entropy: \[ \Delta S^\circ = 186.3 - (5.70 + 261.4) = 186.3 - 267.1 = -80.8 \text{ J/(K·mol)} \] To convert this to kJ/(K·mol): \[ \Delta S^\circ = -80.8 \times 10^{-3} \text{ kJ/(K·mol)} \] ### Step 3: Calculate ΔG° Now we can substitute ΔH° and ΔS° into the Gibbs free energy equation: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] Substituting the values: \[ \Delta G^\circ = -74.81 \text{ kJ/mol} - (300 \text{ K}) \times (-80.8 \times 10^{-3} \text{ kJ/(K·mol)}) \] Calculating the second term: \[ \Delta G^\circ = -74.81 + 24.24 = -50.57 \text{ kJ/mol} \] ### Final Answer Thus, the standard free energy change for the formation of methane at 300 K is: \[ \Delta G^\circ \approx -50.57 \text{ kJ/mol} \]

To calculate the standard free energy change (ΔG°) for the formation of methane (CH₄) at 300 K from graphite (C) and hydrogen gas (H₂), we will use the following thermodynamic relationship: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] ### Step 1: Calculate ΔH° (Standard Enthalpy Change) ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    VMC MODULES ENGLISH|Exercise LEVEL-2 (NUMERICAL VALUE TYPE)|15 Videos
  • THERMODYNAMICS

    VMC MODULES ENGLISH|Exercise JEE (MAIN ARCHIVE)|32 Videos
  • THERMODYNAMICS

    VMC MODULES ENGLISH|Exercise LEVEL-1|75 Videos
  • THERMOCHEMISTRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|31 Videos
  • THERMODYNAMICS & THERMOCHEMISTRY

    VMC MODULES ENGLISH|Exercise Impeccable|48 Videos

Similar Questions

Explore conceptually related problems

Calculate the standard molar entropy change for the formation of gaseous propane (C_(3)H_(8)) at 293K . 3C("graphite") +4H_(2)(g) rarr C_(3)H_(8)(g) Standard molar entropies S_(m)^(Theta) (JK^(-1)mol^(-1)) are: C("graphite") = 5.7, H_(2)(g) = 130.7,C_(3)H_(5)(g) = 270.2

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) = 206.8 J K^(-1) mol^(-1) .

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)

Compute the standard free enegry of the reaction at 27^(@)C for the combustion fo methane using the give data: CH_(4)(g) +2O_(2)(g) rarr CO_(2)(g) +2H_(2)O(l) {:(Species,CH_(4),O_(2),CO_(2),2H_(2)O(l)),(Delta_(f)H^(Theta)(kJmol^(-1)),-74.8,-,-393.5,-285.8),(S^(Theta)(JK^(-1)mol^(-1)),186,205,214,70):}

Calculate the standard free energy change for the following reaction at 27^@C . H_2(g) + I_2(g) to 2HI(g) , DeltaH^@ = + 51.9 kJ [Given : DeltaS_(H_2)^@ = 130.6 JK^(-1) mol^(-1) DeltaS_(I_2)^@ = 116.7 JK^(-1) mol^(-1) DeltaS_(HI)^@ = 206.3 JK^(-1) mol^(-1)] . Predict whether the reaction is feasible at 27°C or not.

Will the reaction, I_(2)(s) +H_(2)S(g) rarr 2HI(g) +S(s) proceed spontaneously in the forward direction of 298K Delta_(f)G^(Theta)HI(g) = 1.8 kJ mol^(-1), Delta_(f)G^(Theta)H_(2)S(g) = 33.8 kJ mol^(-1) ?

Calculate equilibrium constant for the reaction: 2SO_(2)(g) +O_(2)(g) hArr 2SO_(3)(g) at 25^(@)C Given: Delta_(f)G^(Theta) SO_(3)(g) = - 371.1 kJ mol^(-1) , Delta_(f)G^(Theta)SO_(2)(g) =- 300.2 kJ mol^(-1) and R = 8.31 J K^(-1) mol^(-1)

Calculate the free energy change for the following reaction at 300 K. 2CuO_((s)) rarr Cu_(2)O_((s))+(1)/(2)O_(2(g)) Given Delta H = 145.6 kJ mol^(-1) and Delta S = 116.JK^(-1) mol^(-1)

For the formation of C(g) "at" 300 K. A(g) + 3B(g) rarr 2C(g) Calculate the magnitude of DeltaG^(@) (Kcal) if given data: {:(,A,B,C),(DeltaH_(f)^(@)("Kcal mol"^(-1)),0,0,-10),(DeltaS_(f)^(@) ("Cal K"^(-1) "mol"^(-1)), 40,30,45):}

VMC MODULES ENGLISH-THERMODYNAMICS-LEVEL-2
  1. Industrial acetylene gas (ethyne: C(2)H(2)) is made by the high temper...

    Text Solution

    |

  2. Which one of the following statements is true

    Text Solution

    |

  3. Calculate the standard free energy change for the formation of methane...

    Text Solution

    |

  4. Given: Delta(f)H^(@) (kJ//mol) " " S(m)^(@)(J//K mol) {:( C Cl(4)(...

    Text Solution

    |

  5. Calculate the change in molar Gibbs energy of carbon dioxide gas at 20...

    Text Solution

    |

  6. Calculate Delta(r)S("sys")^(@) for the following reaction at 373 K: ...

    Text Solution

    |

  7. A certain process releases 64.0 kJ of heat, which is transferred to th...

    Text Solution

    |

  8. Which of the following is (are) correct?

    Text Solution

    |

  9. When ice melts at 1^(@)C :

    Text Solution

    |

  10. The standard enthalpy of formation of gaseous H(2)O at 298 K is -241.8...

    Text Solution

    |

  11. Which statements in each of the following paris would you except to ha...

    Text Solution

    |

  12. DeltaH for solid to liquid transitions for protein A and B are 2.73 kc...

    Text Solution

    |

  13. For the auto-ionization of water at 25^(@)C, H(2)O(l)iff H^(+)(aq)+OH^...

    Text Solution

    |

  14. For a particular reversible reaction at temperature T, DeltaH and Delt...

    Text Solution

    |

  15. Which of the following reactions defines DeltaH(f)^(@) ?

    Text Solution

    |

  16. The direct conversion of A or B is difficult, hence it is carried out ...

    Text Solution

    |

  17. A schematic plot of ln K(eq) versus inverse of temperature for a react...

    Text Solution

    |

  18. An endotthermic reaction is non-spontaneous at freezing point of water...

    Text Solution

    |

  19. Select the correct statement(s) about entropy S

    Text Solution

    |

  20. A particular reaction at 27^(@)C for which Delta H gt 0 and Delta S gt...

    Text Solution

    |