Home
Class 12
MATHS
sqrt(secx)...

`sqrt(secx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\sec x} \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function using exponent notation: \[ y = (\sec x)^{1/2} \] ### Step 2: Apply the chain rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The chain rule states that if \( y = f(g(x)) \), then: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \] In our case, \( f(u) = u^{1/2} \) where \( u = \sec x \). ### Step 3: Differentiate the outer function First, we find the derivative of the outer function \( f(u) = u^{1/2} \): \[ f'(u) = \frac{1}{2} u^{-1/2} = \frac{1}{2 \sqrt{u}} \] ### Step 4: Differentiate the inner function Next, we need to differentiate the inner function \( g(x) = \sec x \): \[ g'(x) = \sec x \tan x \] ### Step 5: Combine the derivatives Now we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) = \frac{1}{2 \sqrt{\sec x}} \cdot (\sec x \tan x) \] ### Step 6: Simplify the expression Now, we simplify the expression: \[ \frac{dy}{dx} = \frac{\sec x \tan x}{2 \sqrt{\sec x}} \] ### Step 7: Rewrite in terms of \( \sqrt{\sec x} \) We can also express this as: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \sqrt{\sec x} \cdot \tan x \] ### Final Result Thus, the derivative of \( y = \sqrt{\sec x} \) is: \[ \frac{dy}{dx} = \frac{\tan x}{2 \sqrt{\sec x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(cos^(-1)sqrt(cosx)) is equal to (a) 1/2sqrt(1+s e cx) (b) sqrt(1+secx) (c) -1/2sqrt(1+secx) (d) -sqrt(1+secx)

int sqrt(1+secx) dx is equal to:

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

If "f"("x")=sqrt((sec"x"-1)/(secx+1))" " find "f '"("x")dot Also find "f^,(pi/2)dot

If 0 < x < pi/2 , intsqrt(1+secx)dx=2sin^(-1)(asin^(-1)(x/b))+C , where C is arbitrary constant, then ordered pair (a , b) is (1,sqrt(2)) (2) (sqrt(2),1) (sqrt(2),2) (4) (2,sqrt(2))

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

If primitive of sqrt((1+secx)) is 2fog(x)+c , then

int(secx)/(sqrt(cos2x)) dx is equal to

Let S={xepsilon(-pi,pi):x!=0,+pi/2} The sum of all distinct solutions of the equation sqrt3secx+cosecx+2(tan x-cot x)=0 in the set S is equal to

Let S={xepsilon(-pi,pi):x!=0,+pi/2} The sum of all distinct solutions of the equation sqrt3secx+cosecx+2(tan x-cot x)=0 in the set S is equal to