Home
Class 12
MATHS
derivative of e^(mx).cos n x...

derivative of `e^(mx).cos n x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = e^{mx} \cos(nx) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u(x) \) and \( v(x) \), then the derivative of their product is given by: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] ### Step-by-Step Solution: 1. **Identify the Functions**: Let: - \( u = e^{mx} \) - \( v = \cos(nx) \) 2. **Differentiate \( u \) and \( v \)**: - The derivative of \( u \) with respect to \( x \): \[ \frac{du}{dx} = \frac{d}{dx}(e^{mx}) = e^{mx} \cdot \frac{d}{dx}(mx) = e^{mx} \cdot m \] - The derivative of \( v \) with respect to \( x \): \[ \frac{dv}{dx} = \frac{d}{dx}(\cos(nx)) = -\sin(nx) \cdot \frac{d}{dx}(nx) = -\sin(nx) \cdot n \] 3. **Apply the Product Rule**: Now, using the product rule: \[ \frac{d}{dx}(e^{mx} \cos(nx)) = u \frac{dv}{dx} + v \frac{du}{dx} \] Substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ = e^{mx} \cdot \left(-n \sin(nx)\right) + \cos(nx) \cdot (m e^{mx}) \] 4. **Simplify the Expression**: Combine the terms: \[ = -n e^{mx} \sin(nx) + m e^{mx} \cos(nx) \] 5. **Final Result**: Thus, the derivative of \( f(x) = e^{mx} \cos(nx) \) is: \[ f'(x) = e^{mx} \left( m \cos(nx) - n \sin(nx) \right) \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

derivative of e^(x/a)

derivative of e^(x^2+1)

Find second order derivative of e^(6x)cos3x

derivative of "cos" e^(x)

derivative of cos(x^4)

derivative of tan (e^x+5)

derivative of e^(-2x)sin 4 x

Find the derivative of e^sinx.cosx with respect to x

Find the derivative of (e^(x)sin x) with respect to 'x'.

Find the derivative of y = e^(2x)