Home
Class 12
MATHS
log(sqrt(x)+1/sqrt(x))...

`log(sqrt(x)+1/sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \log\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) \), we will follow these steps: ### Step 1: Rewrite the function Let \( y = \log\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) \). ### Step 2: Differentiate using the chain rule Using the chain rule, the derivative of \( \log(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \] where \( u = \sqrt{x} + \frac{1}{\sqrt{x}} \). ### Step 3: Find \( \frac{du}{dx} \) Now we need to differentiate \( u \): \[ u = \sqrt{x} + \frac{1}{\sqrt{x}} = x^{1/2} + x^{-1/2} \] Differentiating \( u \): \[ \frac{du}{dx} = \frac{1}{2}x^{-1/2} - \frac{1}{2}x^{-3/2} \] This can be simplified to: \[ \frac{du}{dx} = \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}} = \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}} = \frac{x - 1}{2x\sqrt{x}} \] ### Step 4: Substitute back into the derivative formula Now substitute \( u \) and \( \frac{du}{dx} \) back into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x} + \frac{1}{\sqrt{x}}} \cdot \frac{x - 1}{2x\sqrt{x}} \] ### Step 5: Simplify the expression The expression can be simplified: \[ \frac{dy}{dx} = \frac{x - 1}{2x\sqrt{x}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)} \] Now simplify \( \sqrt{x} + \frac{1}{\sqrt{x}} \): \[ \sqrt{x} + \frac{1}{\sqrt{x}} = \frac{x + 1}{\sqrt{x}} \] Thus, substituting this back gives: \[ \frac{dy}{dx} = \frac{x - 1}{2x\sqrt{x} \cdot \frac{x + 1}{\sqrt{x}}} = \frac{x - 1}{2x(x + 1)} \] ### Final Result So, the derivative of the function \( y = \log\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) \) is: \[ \frac{dy}{dx} = \frac{x - 1}{2x(x + 1)} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

y=log((sqrt(x+1)+1]/(sqrt(x+1)-1))

If int log(sqrt(1-x)+sqrt(1+x))dx=xf(x)+Ax+Bsin^(-1)x+C , then

int_0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

int_0^1 log(sqrt(1+x)+sqrt(1-x))dx= (A) 1/2(log2-pi/2+1) (B) 1/2(log2+pi/2+1) (C) 1/2(log2+pi/2-1) (D) none of these

Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

If "log"_(6) {"log"_(4)(sqrt(x+4) + sqrt(x))} =0 , then x =

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is