Home
Class 12
MATHS
y= (a^2+x^2)/(sqrt(a^2-x^2)) then dy/dx=...

`y= (a^2+x^2)/(sqrt(a^2-x^2))` then dy/dx=

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \frac{a^2 + x^2}{\sqrt{a^2 - x^2}} \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( y = \frac{u}{v} \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = a^2 + x^2 \) and \( v = \sqrt{a^2 - x^2} \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = a^2 + x^2 \) - \( v = \sqrt{a^2 - x^2} \) ### Step 2: Differentiate \( u \) and \( v \) Now, we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. **Differentiate \( u \)**: \[ \frac{du}{dx} = \frac{d}{dx}(a^2 + x^2) = 0 + 2x = 2x \] 2. **Differentiate \( v \)**: Using the chain rule: \[ \frac{dv}{dx} = \frac{d}{dx}(\sqrt{a^2 - x^2}) = \frac{1}{2\sqrt{a^2 - x^2}} \cdot (-2x) = -\frac{x}{\sqrt{a^2 - x^2}} \] ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{\sqrt{a^2 - x^2} \cdot (2x) - (a^2 + x^2) \cdot \left(-\frac{x}{\sqrt{a^2 - x^2}}\right)}{(\sqrt{a^2 - x^2})^2} \] ### Step 4: Simplify the Expression 1. The denominator simplifies to: \[ (\sqrt{a^2 - x^2})^2 = a^2 - x^2 \] 2. The numerator becomes: \[ 2x\sqrt{a^2 - x^2} + \frac{x(a^2 + x^2)}{\sqrt{a^2 - x^2}} \] Combine the terms: \[ = \frac{2x(a^2 - x^2) + x(a^2 + x^2)}{\sqrt{a^2 - x^2}} \] \[ = \frac{2xa^2 - 2x^3 + xa^2 + x^3}{\sqrt{a^2 - x^2}} = \frac{3xa^2 - x^3}{\sqrt{a^2 - x^2}} \] Thus, we have: \[ \frac{dy}{dx} = \frac{3xa^2 - x^3}{(a^2 - x^2)^{3/2}} \] ### Final Result The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{x(3a^2 - x^2)}{(a^2 - x^2)^{3/2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If x=sqrt(1-y^2) , then (dy)/(dx)=

y=2^(sqrt(x)) then (dy)/(dx) is

If y= log (x+sqrt(x^2-1)) , then dy/dx=

A normal is drawn at a point P(x,y) of a curve. It meets the x-axis at Q such that PQ is of constant length k . Answer the question:The differential equation describing such a curve is (A) y dy/dx=+-sqrt(k^2-x^2) (B) x dy/dx=+-sqrt(k^2-x^2) (C) y dy/dx=+-sqrt(k^2-y^2) (D) x dy/dx=+-sqrt(k^2-y^2)

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)),t h e n(dy)/(dx)i se q u a lto (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If (x+sqrt(1+x^(2))) (y+sqrt(1+y^(2))) =1 then (dy)/(dx) may be equals to

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is: