Home
Class 12
MATHS
Differentiate sqrt((1-tanx)/(1+tanx)) w....

Differentiate `sqrt((1-tanx)/(1+tanx))` w.r.t.x.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sqrt{\frac{1 - \tan x}{1 + \tan x}} \) with respect to \( x \), we will follow these steps: ### Step 1: Let \( t = \frac{1 - \tan x}{1 + \tan x} \) We start by letting \( t \) represent the expression inside the square root. ### Step 2: Rewrite \( y \) in terms of \( t \) Now we can express \( y \) in terms of \( t \): \[ y = \sqrt{t} \] ### Step 3: Differentiate \( y \) with respect to \( x \) Using the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{1}{2\sqrt{t}} \cdot \frac{dt}{dx} \] ### Step 4: Differentiate \( t \) with respect to \( x \) To find \( \frac{dt}{dx} \), we will use the quotient rule on \( t = \frac{1 - \tan x}{1 + \tan x} \): Let \( u = 1 - \tan x \) and \( v = 1 + \tan x \). Using the quotient rule: \[ \frac{dt}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where: - \( \frac{du}{dx} = -\sec^2 x \) (derivative of \( 1 - \tan x \)) - \( \frac{dv}{dx} = \sec^2 x \) (derivative of \( 1 + \tan x \)) Substituting these into the quotient rule: \[ \frac{dt}{dx} = \frac{(1 + \tan x)(-\sec^2 x) - (1 - \tan x)(\sec^2 x)}{(1 + \tan x)^2} \] ### Step 5: Simplify \( \frac{dt}{dx} \) Expanding the numerator: \[ = \frac{-\sec^2 x - \tan x \sec^2 x - \sec^2 x + \tan x \sec^2 x}{(1 + \tan x)^2} \] This simplifies to: \[ = \frac{-2\sec^2 x}{(1 + \tan x)^2} \] ### Step 6: Substitute \( \frac{dt}{dx} \) back into \( \frac{dy}{dx} \) Now we substitute \( \frac{dt}{dx} \) back into the expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2\sqrt{t}} \cdot \left(-\frac{2\sec^2 x}{(1 + \tan x)^2}\right) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\sec^2 x}{\sqrt{t} (1 + \tan x)^2} \] ### Step 7: Substitute \( t \) back into the expression Recall that \( t = \frac{1 - \tan x}{1 + \tan x} \): \[ \sqrt{t} = \sqrt{\frac{1 - \tan x}{1 + \tan x}} \] Thus, the final expression for \( \frac{dy}{dx} \) becomes: \[ \frac{dy}{dx} = -\frac{\sec^2 x}{\sqrt{\frac{1 - \tan x}{1 + \tan x}} (1 + \tan x)^2} \] ### Final Result \[ \frac{dy}{dx} = -\frac{\sec^2 x}{(1 + \tan x)^2 \sqrt{\frac{1 - \tan x}{1 + \tan x}}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate wrto x: (1-tanx)/(1+tanx)

Differentiate sqrt(sin^(-1)sqrt(x)) w.r.t. x, ( 0 lt x lt 1 )

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

Differentiate sqrt((1-x)/(1+x)) with respect to x.

Differentiate sqrt((1+sinx)/(1-sinx)) with respect to x .

Differentiate sqrt(x) +1/ (sqrt(x) )

Differentiate sqrt((1+x)/(1-x)) with respect to x .

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate x^(2)tanx .

Differentiate sin^(-1)'(1)/(sqrt(x+1))