Home
Class 12
MATHS
If y=sqrt((1-x)/(1+x) then (dy)/(dx) equ...

If `y=sqrt((1-x)/(1+x)` then `(dy)/(dx)` equals

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \sqrt{\frac{1-x}{1+x}} \), we can follow these steps: ### Step 1: Rewrite the Function First, we rewrite the function in a more manageable form: \[ y = \left( \frac{1-x}{1+x} \right)^{\frac{1}{2}} \] ### Step 2: Take the Natural Logarithm Next, we take the natural logarithm of both sides: \[ \ln y = \frac{1}{2} \ln\left(\frac{1-x}{1+x}\right) \] ### Step 3: Differentiate Both Sides Now, we differentiate both sides with respect to \( x \). Using the chain rule on the left side and the properties of logarithms on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\frac{1-x}{1+x}} \cdot \frac{d}{dx}\left(\frac{1-x}{1+x}\right) \] ### Step 4: Differentiate the Quotient To differentiate \( \frac{1-x}{1+x} \), we use the quotient rule: \[ \frac{d}{dx}\left(\frac{1-x}{1+x}\right) = \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} = \frac{-1 - x - 1 + x}{(1+x)^2} = \frac{-2}{(1+x)^2} \] ### Step 5: Substitute Back Now, substituting this back into our derivative equation: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1+x}{1-x} \cdot \frac{-2}{(1+x)^2} \] This simplifies to: \[ \frac{1}{y} \frac{dy}{dx} = \frac{-1}{(1-x)(1+x)} \] ### Step 6: Solve for \( \frac{dy}{dx} \) Multiplying both sides by \( y \): \[ \frac{dy}{dx} = y \cdot \frac{-1}{(1-x)(1+x)} \] ### Step 7: Substitute \( y \) Back Now substitute \( y = \sqrt{\frac{1-x}{1+x}} \) back into the equation: \[ \frac{dy}{dx} = \sqrt{\frac{1-x}{1+x}} \cdot \frac{-1}{(1-x)(1+x)} \] ### Step 8: Simplify This gives us: \[ \frac{dy}{dx} = \frac{-\sqrt{1-x}}{(1-x)(1+x)\sqrt{1+x}} \] ### Final Result Thus, the final expression for \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{-\sqrt{1-x}}{(1-x)(1+x)\sqrt{1+x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(1-y^2) , then (dy)/(dx)=

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If y = sqrt(1-cosx)/(1+ cos x) find (dy)/(dx)

If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)),t h e n d(dy)/(dx) is equal to'

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :