Home
Class 12
MATHS
logsqrt((1-cos x)/(1+cos x))...

`logsqrt((1-cos x)/(1+cos x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( y = \log \sqrt{\frac{1 - \cos x}{1 + \cos x}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \log \sqrt{\frac{1 - \cos x}{1 + \cos x}} \] Using the property of logarithms, we can rewrite this as: \[ y = \frac{1}{2} \log \left( \frac{1 - \cos x}{1 + \cos x} \right) \] ### Step 2: Use trigonometric identities We can utilize the trigonometric identities: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \quad \text{and} \quad 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Substituting these into our expression gives: \[ y = \frac{1}{2} \log \left( \frac{2 \sin^2\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)} \right) \] This simplifies to: \[ y = \frac{1}{2} \log \left( \tan^2\left(\frac{x}{2}\right) \right) \] ### Step 3: Simplify further Using the property of logarithms, we can simplify this further: \[ y = \log \left( \tan\left(\frac{x}{2}\right) \right) \] ### Step 4: Differentiate with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{\tan\left(\frac{x}{2}\right)} \cdot \frac{d}{dx}\left(\tan\left(\frac{x}{2}\right)\right) \] Using the chain rule: \[ \frac{d}{dx}\left(\tan\left(\frac{x}{2}\right)\right) = \sec^2\left(\frac{x}{2}\right) \cdot \frac{1}{2} \] Thus, we have: \[ \frac{dy}{dx} = \frac{1}{\tan\left(\frac{x}{2}\right)} \cdot \sec^2\left(\frac{x}{2}\right) \cdot \frac{1}{2} \] ### Step 5: Simplify the derivative We can express \( \sec^2\left(\frac{x}{2}\right) \) in terms of sine and cosine: \[ \frac{dy}{dx} = \frac{1}{\tan\left(\frac{x}{2}\right)} \cdot \frac{1}{\cos^2\left(\frac{x}{2}\right)} \cdot \frac{1}{2} \] Since \( \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} \), we can rewrite: \[ \frac{dy}{dx} = \frac{1}{\frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}} \cdot \frac{1}{\cos^2\left(\frac{x}{2}\right)} \cdot \frac{1}{2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \cdot \frac{1}{\cos^2\left(\frac{x}{2}\right)} \cdot \frac{1}{2} = \frac{1}{2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)} \] Using the identity \( 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) = \sin(x) \): \[ \frac{dy}{dx} = \frac{1}{\sin(x)} \] ### Final Result Thus, the derivative of the given expression is: \[ \frac{dy}{dx} = \frac{1}{\sin x} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5c|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(v) tan^(-1)sqrt((1+cos x)/(1-cos x))

Prove that sqrt ((1- cos 2x)/( 1 + cos 2x )) = tan x, x in I or III quad.

(sin x)/(1+cos x)

int (1-cos x)/(1+cos x) dx=?

int(1+cos 2x)/(1-cos 2x)dx

(xsin x)/(1+cos x)

lim_(x to 0) (1 - cos 4x)/(1 - cos x) = _________

Differentiate logsqrt((1+sinx)/(1-sinx)) with respect to x .

Differentiate logsqrt((1+sinx)/(1-sinx)) with respect to x :

tan^(-1) ((1-cos x)/(sin x))