Home
Class 12
MATHS
cot^(-1)sqrt(x)...

`cot^(-1)sqrt(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cot^{-1}(\sqrt{x}) \) with respect to \( x \), we will follow these steps: ### Step 1: Set up the equation Let \( y = \cot^{-1}(\sqrt{x}) \). ### Step 2: Differentiate using the chain rule We know that the derivative of \( \cot^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{dy}{du} = -\frac{1}{1 + u^2} \] where \( u = \sqrt{x} \). ### Step 3: Differentiate \( u = \sqrt{x} \) Next, we need to find \( \frac{du}{dx} \): \[ u = \sqrt{x} = x^{1/2} \] Using the power rule, we differentiate: \[ \frac{du}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] ### Step 4: Apply the chain rule Now, we apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = -\frac{1}{1 + (\sqrt{x})^2} \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Simplify the expression Since \( (\sqrt{x})^2 = x \), we can simplify: \[ \frac{dy}{dx} = -\frac{1}{1 + x} \cdot \frac{1}{2\sqrt{x}} = -\frac{1}{2\sqrt{x}(1 + x)} \] ### Final Result Thus, the derivative of \( y = \cot^{-1}(\sqrt{x}) \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x}(1 + x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of the following function with respect to 'x' cot^(-1)(sqrt(1+x^2)+x)

Number of solutions of the equation cot^(-1)sqrt(4-x^(2))+cos^(-1)(x^(2)-5)=(3pi)/2 is:

Find the principal values of cot^(-1)sqrt(3) and cot^(-1)(-1)

Find the principal values of cot^(-1)sqrt(3) and cot^(-1)(-1)

Find the principal values of each of the following: cot^(-1)(-sqrt(3)) (ii) cot^(-1)(sqrt(3))

Find the principal values of each of the following: cot^(-1)(-sqrt(3)) (ii) cot^(-1)(sqrt(3))

Find the principal value of: cot^(-1)(sqrt(3))

Find the principal value of cot^(-1)(-sqrt3)

If I=underset (0)overset(1) int cos{ 2 "cot"^(-1)sqrt((1-x)/(1+x))}dx then

Differentiate sin^(-1)sqrt(1-x^2) with respect to cot^(-1)(x/sqrt(1-x^2)) if 0< x <1