Home
Class 12
MATHS
derivative of cos ^(-1)(x/a)...

derivative of `cos ^(-1)(x/a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos^{-1}\left(\frac{x}{a}\right) \), we will follow these steps: ### Step 1: Identify the function and its derivative The function we are dealing with is \( y = \cos^{-1}\left(\frac{x}{a}\right) \). We know the derivative of \( \cos^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{d}{du} \cos^{-1}(u) = -\frac{1}{\sqrt{1 - u^2}} \] In our case, \( u = \frac{x}{a} \). ### Step 2: Apply the chain rule To find the derivative of \( y \) with respect to \( x \), we need to apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] where \( u = \frac{x}{a} \). ### Step 3: Compute \( \frac{du}{dx} \) Now, we calculate \( \frac{du}{dx} \): \[ u = \frac{x}{a} \implies \frac{du}{dx} = \frac{1}{a} \] ### Step 4: Substitute into the chain rule Now, substituting \( \frac{dy}{du} \) and \( \frac{du}{dx} \) into the chain rule: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} \cdot \frac{1}{a} \] ### Step 5: Simplify the expression Now, we simplify the expression: \[ \frac{dy}{dx} = -\frac{1}{a \sqrt{1 - \frac{x^2}{a^2}}} \] This can be rewritten by combining the terms under the square root: \[ \frac{dy}{dx} = -\frac{1}{a \sqrt{\frac{a^2 - x^2}{a^2}}} \] \[ = -\frac{1}{a} \cdot \frac{\sqrt{a^2}}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \cdot \frac{a}{\sqrt{a^2 - x^2}} = -\frac{1}{\sqrt{a^2 - x^2}} \] ### Final Result Thus, the derivative of \( y = \cos^{-1}\left(\frac{x}{a}\right) \) is: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{a^2 - x^2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

derivative of "cos" e^(x)

derivative of log cos x

derivative of cos(x^4)

Find the derivative of cos^(-1)(cot x) with respect to 'x'

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

The derivative of cos^(-1)(2x^(2)-1) w.r.t cos^(-1)x is

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

The derivative of cos^(-1)(2x^2-1) with respect to cos^(-1)x is (a) 2 (b) 1/(2sqrt(1-x^2)) (c) 2//x (d) 1-x^2

The derivative of f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+{sin^(-1)((1)/(sqrt3)(2cosx+3sinx))} w.r.t. sqrt(1+x^(2)) at x=(1)/(sqrt3) is.........

The derivative of cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4)ltxlt(pi)/(4) , w.r.t.x is