Home
Class 12
MATHS
cosec^(-1)3x...

`cosec^(-1)3x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \csc^{-1}(3x) \) with respect to \( x \), we will follow these steps: ### Step 1: Set up the equation Let \( y = \csc^{-1}(3x) \). ### Step 2: Use the derivative formula for \( \csc^{-1}(y) \) The derivative of \( \csc^{-1}(y) \) with respect to \( y \) is given by: \[ \frac{dy}{dy} = -\frac{1}{|y| \sqrt{y^2 - 1}} \] In our case, \( y = 3x \). ### Step 3: Differentiate with respect to \( x \) Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy}{dy} \cdot \frac{dy}{dx} \] Substituting the derivative formula: \[ \frac{dy}{dx} = -\frac{1}{|3x| \sqrt{(3x)^2 - 1}} \cdot \frac{d(3x)}{dx} \] ### Step 4: Calculate \( \frac{d(3x)}{dx} \) The derivative of \( 3x \) with respect to \( x \) is: \[ \frac{d(3x)}{dx} = 3 \] ### Step 5: Substitute back into the derivative Now substituting this back into our expression: \[ \frac{dy}{dx} = -\frac{1}{|3x| \sqrt{9x^2 - 1}} \cdot 3 \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = -\frac{3}{|3x| \sqrt{9x^2 - 1}} \] Since \( |3x| = 3|x| \), we can further simplify: \[ \frac{dy}{dx} = -\frac{1}{|x| \sqrt{9x^2 - 1}} \] ### Final Result Thus, the derivative of \( y = \csc^{-1}(3x) \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{|x| \sqrt{9x^2 - 1}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Solve sec^(-1) x gt cosec^(-1) x

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Draw the graph of y="cosec"("cosec"^(-1)x)" or "y=sec(sec^(-1)x) .

cosec^(-1)(-x),x in R-(-1,1), is equal to

Draw the graph of y=sec^(-1)x+cosec^(-1)x

The differential coefficient of a^(log10" cosec"^(-1)x) , is

Domain of f(x)=cos^(-1)x+cot^(-1)x+cosec^(-1)x is

Express cot(cosec^(-1)x) as an algebraic function of x .

Draw the graph of y=cot^(-1)x+sec^(-1)x+cosec^(-1)x .

Find the maximum value of (sec^(-1) x) (cosec^(-1) x), x ge 1