Home
Class 12
MATHS
sec^(-1)(x/a)...

`sec^(-1)(x/a)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sec^{-1}\left(\frac{x}{a}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Set up the equation Let \( y = \sec^{-1}\left(\frac{x}{a}\right) \). ### Step 2: Differentiate using the chain rule The derivative of \( \sec^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{d}{du} \sec^{-1}(u) = \frac{1}{|u| \sqrt{u^2 - 1}} \] In our case, \( u = \frac{x}{a} \). Therefore, we need to find \( \frac{du}{dx} \). ### Step 3: Find \( \frac{du}{dx} \) We differentiate \( u = \frac{x}{a} \): \[ \frac{du}{dx} = \frac{1}{a} \] ### Step 4: Apply the chain rule Now, using the chain rule: \[ \frac{dy}{dx} = \frac{d}{du} \sec^{-1}(u) \cdot \frac{du}{dx} \] Substituting \( u = \frac{x}{a} \): \[ \frac{dy}{dx} = \frac{1}{\left|\frac{x}{a}\right| \sqrt{\left(\frac{x}{a}\right)^2 - 1}} \cdot \frac{1}{a} \] ### Step 5: Simplify the expression Now we simplify: \[ \frac{dy}{dx} = \frac{1}{\frac{|x|}{a} \sqrt{\frac{x^2}{a^2} - 1}} \cdot \frac{1}{a} \] This can be rewritten as: \[ \frac{dy}{dx} = \frac{a}{|x| \sqrt{\frac{x^2 - a^2}{a^2}}} \cdot \frac{1}{a} \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{|x|} \cdot \sqrt{x^2 - a^2} \] ### Final Answer Thus, the derivative of \( y = \sec^{-1}\left(\frac{x}{a}\right) \) is: \[ \frac{dy}{dx} = \frac{1}{|x| \sqrt{x^2 - a^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(2^x) (ii) cos^(-1)sqrt(x^2-x+1) tan^(-1)(x^2)/(1+x^2) (iv) sec^(-1)(x+1/x)

Sketch the graphs for y=sec(sec^(-1)x)

Find the domain of sec^(-1)(2x+1)

Find the domain of (i) sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Draw the graph of f(x)=sec^(-1)(sec x)

The range of the function f(x) = sec^(-1) ( x) + tan ^(-1) (x) ,is

Among (i) lim_(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim_(xtooo) sec^(-1)((sinx)/(x)).

sec^(-1)(sin x) exist if