Home
Class 12
MATHS
cos^(-1)((1-x)/(1+x))...

`cos^(-1)((1-x)/(1+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \cos^{-1}\left(\frac{1-x}{1+x}\right) \), we will follow these steps: ### Step 1: Set the function Let \[ y = \cos^{-1}\left(\frac{1-x}{1+x}\right) \] ### Step 2: Use a trigonometric substitution We can use the substitution \( x = \tan^2(\theta) \). Then we have: \[ 1 - x = 1 - \tan^2(\theta) = \frac{\cos(2\theta)}{\cos^2(\theta)} \] \[ 1 + x = 1 + \tan^2(\theta) = \frac{1}{\cos^2(\theta)} \] Thus, \[ \frac{1-x}{1+x} = \frac{\cos(2\theta)}{1} = \cos(2\theta) \] ### Step 3: Rewrite the function Now we can rewrite \( y \): \[ y = \cos^{-1}(\cos(2\theta)) = 2\theta \] ### Step 4: Relate \( \theta \) back to \( x \) Since \( x = \tan^2(\theta) \), we have: \[ \tan(\theta) = \sqrt{x} \implies \theta = \tan^{-1}(\sqrt{x}) \] Thus, \[ y = 2\tan^{-1}(\sqrt{x}) \] ### Step 5: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(\sqrt{x})) \] Using the chain rule: \[ \frac{d}{dx}(\tan^{-1}(u)) = \frac{1}{1+u^2} \cdot \frac{du}{dx} \] where \( u = \sqrt{x} \) and \( \frac{du}{dx} = \frac{1}{2\sqrt{x}} \). Thus, \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + (\sqrt{x})^2} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}(1+x)} \] ### Final Answer The derivative of \( y = \cos^{-1}\left(\frac{1-x}{1+x}\right) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x}(1+x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate cos^(-1)((1-x^2)/(1+x^2)) .

Evaluate the following integral: int_0^1cos^(-1)((1-x^2)/(1+x^2))dx

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x

Evaluate: ("lim")_(xvec0)(cos^(-1)((1-x^2)/(1+x^2)))/(sin^(-1)x)

Differentiate cos^(-1)((1-x^2)/(1+x^2)) , 0lt xlt1 with respect to x

Differentiate cos^(-1)((1-x^2)/(1+x^2)) with respect to x , when x in (0,\ oo)

Differentiate cos^(-1)((1-x^2)/(1+x^2)) with respect to x , when x in (-oo,\ 0)

Discuss the differentiability of f(x=cos^(-1)((1-x^2)/(1+x^2))

Differentiate tan^(-1)((2x)/(1-x^2))+cos^(-1)((1-x^2)/(1+x^2)) with respect to x .

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1