Home
Class 12
MATHS
sin^(-1)"(x)/(1+x)...

`sin^(-1)"(x)/(1+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \frac{\sin^{-1}(x)}{1+x} \) with respect to \( x \), we will use the quotient rule of differentiation. The quotient rule states that if you have a function in the form \( \frac{u}{v} \), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = \sin^{-1}(x) \) and \( v = 1+x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = \sin^{-1}(x) \) - \( v = 1 + x \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). 1. The derivative of \( u = \sin^{-1}(x) \) is: \[ \frac{du}{dx} = \frac{1}{\sqrt{1 - x^2}} \] 2. The derivative of \( v = 1 + x \) is: \[ \frac{dv}{dx} = 1 \] ### Step 3: Apply the Quotient Rule Now, we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{(1+x) \cdot \frac{1}{\sqrt{1 - x^2}} - \sin^{-1}(x) \cdot 1}{(1+x)^2} \] ### Step 4: Simplify the Expression Substituting the derivatives into the quotient rule formula gives us: \[ \frac{dy}{dx} = \frac{(1+x) \cdot \frac{1}{\sqrt{1 - x^2}} - \sin^{-1}(x)}{(1+x)^2} \] ### Step 5: Final Expression Thus, the derivative of \( y = \frac{\sin^{-1}(x)}{1+x} \) is: \[ \frac{dy}{dx} = \frac{(1+x)}{\sqrt{1 - x^2}(1+x)^2} - \frac{\sin^{-1}(x)}{(1+x)^2} \] This can be further simplified, but this is the derivative in its current form.
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

Integrate the functions sin^(-1)((2x)/(1+x^2))

Draw the graph of y=sin^(-1)((2x)/(1+x^(2)))

Sketch for the curve y = sin^(-1)( (2x)/( 1 + x^2))

Differentiate sin^(-1)((2x)/(1+x^2))

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

Evaluate: int_0^(1)sin^(-1)((2x)/(1+x^2))dx