Home
Class 12
MATHS
sin (tan ^(-1)2x)...

`sin (tan ^(-1)2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(\tan^{-1}(2x)) \), we will apply the chain rule of differentiation step by step. ### Step-by-Step Solution: 1. **Define the function:** Let \( y = \sin(\tan^{-1}(2x)) \). 2. **Identify the inner function:** Let \( u = \tan^{-1}(2x) \). Therefore, we can rewrite \( y \) as: \[ y = \sin(u) \] 3. **Differentiate using the chain rule:** According to the chain rule, the derivative \( \frac{dy}{dx} \) can be expressed as: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] 4. **Differentiate \( y \) with respect to \( u \):** The derivative of \( \sin(u) \) with respect to \( u \) is: \[ \frac{dy}{du} = \cos(u) \] 5. **Differentiate \( u \) with respect to \( x \):** Now we need to find \( \frac{du}{dx} \). The derivative of \( \tan^{-1}(x) \) is given by: \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2} \] Thus, for \( u = \tan^{-1}(2x) \): \[ \frac{du}{dx} = \frac{1}{1+(2x)^2} \cdot \frac{d}{dx}(2x) = \frac{1}{1+4x^2} \cdot 2 = \frac{2}{1+4x^2} \] 6. **Combine the derivatives:** Now substituting back into the chain rule: \[ \frac{dy}{dx} = \cos(u) \cdot \frac{du}{dx} = \cos(\tan^{-1}(2x)) \cdot \frac{2}{1+4x^2} \] 7. **Simplify \( \cos(\tan^{-1}(2x)) \):** To find \( \cos(\tan^{-1}(2x)) \), we can use the identity: \[ \cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}} \] Therefore, \[ \cos(\tan^{-1}(2x)) = \frac{1}{\sqrt{1+(2x)^2}} = \frac{1}{\sqrt{1+4x^2}} \] 8. **Final expression for the derivative:** Substituting this back into our derivative: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1+4x^2}} \cdot \frac{2}{1+4x^2} = \frac{2}{(1+4x^2)\sqrt{1+4x^2}} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{2}{(1+4x^2)\sqrt{1+4x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Solve : tan(cos^(-1) x) = sin (tan^(-1) 2)

Solve for x: sin(2 tan^(-1)x)=1

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

Evaluate: int(sin(tan^(-1)x)/(1+x^2)dx )

Evaluate: (i) int(cossqrt(x))/(sqrt(x))\ dx (ii) int(sin(tan^(-1)x)/(1+x^2)\ dx

(i) int(1)/(sqrt(1-x^(2)).cos^(-1) x)dx (ii) int (sin(tan^(-1)x))/(1+x^(2))dx

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

If x=sin(2tan^(-1)2)and y=sin((1)/(2)tan^(-1).(4)/(3)) , then prove that y^2 = 1 - x

The value of x where xgt0 and tan(sec^(-1)(1/x))=sin(tan^(-1)2) is

"sin"("tan"^(-1)x) is equal to :