Home
Class 12
MATHS
tan ^(-1)(cos sqrt(x))...

`tan ^(-1)(cos sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}(\cos(\sqrt{x})) \) with respect to \( x \), we will use the chain rule. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions Let: - \( u = \cos(\sqrt{x}) \) (inner function) - \( y = \tan^{-1}(u) \) (outer function) ### Step 2: Differentiate the outer function The derivative of \( y = \tan^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{dy}{du} = \frac{1}{1 + u^2} \] ### Step 3: Differentiate the inner function Next, we need to differentiate \( u = \cos(\sqrt{x}) \) with respect to \( x \). We will apply the chain rule again: - Let \( v = \sqrt{x} \) (inner function for \( u \)) - Then, \( u = \cos(v) \) The derivative of \( u = \cos(v) \) with respect to \( v \) is: \[ \frac{du}{dv} = -\sin(v) \] Now, differentiate \( v = \sqrt{x} \) with respect to \( x \): \[ \frac{dv}{dx} = \frac{1}{2\sqrt{x}} \] ### Step 4: Combine the derivatives using the chain rule Now, we can find \( \frac{du}{dx} \) using the chain rule: \[ \frac{du}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx} = -\sin(v) \cdot \frac{1}{2\sqrt{x}} = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 5: Combine everything to find \( \frac{dy}{dx} \) Now we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{1 + u^2} \cdot \left(-\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) \] Substituting back \( u = \cos(\sqrt{x}) \): \[ \frac{dy}{dx} = \frac{1}{1 + \cos^2(\sqrt{x})} \cdot \left(-\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) \] ### Final Result Thus, the derivative of \( y = \tan^{-1}(\cos(\sqrt{x})) \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{\sin(\sqrt{x})}{2\sqrt{x}(1 + \cos^2(\sqrt{x}))} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")), prove that siny=tan^2x/2

If y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")), prove that siny=tan^2x/2

int(sinx)/(3+4cos^2x)\ dx a. log(3+4cos^2x)+C (b) 1/(2sqrt(3))tan^(-1)((cosx)/(sqrt(3)))+C (c) -1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C (d) 1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C

If x in (1/(sqrt(2)),\ 1) , differentiate tan^(-1)((sqrt(1-x^2))/x) with respect to cos^(-1)(2xsqrt(1-x^2)) .

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

Prove that : (1)/(2) cos^(-1) ((1+ 2 cos x)/( 2+cosx) ) = tan^(-1) ((1)/(sqrt(3)) "tan" (x)/(2))

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0