Home
Class 12
MATHS
sqrt(cot^(-1)sqrt(x))...

` sqrt(cot^(-1)sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sqrt{\cot^{-1}(\sqrt{x})} \) with respect to \( x \), we will use the chain rule. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions Let: - \( u = \cot^{-1}(\sqrt{x}) \) - Therefore, \( y = \sqrt{u} \) ### Step 2: Differentiate the outer function Using the chain rule, we differentiate \( y \) with respect to \( u \): \[ \frac{dy}{du} = \frac{1}{2\sqrt{u}} = \frac{1}{2\sqrt{\cot^{-1}(\sqrt{x})}} \] ### Step 3: Differentiate the inner function Next, we differentiate \( u \) with respect to \( x \): \[ u = \cot^{-1}(\sqrt{x}) \] Using the derivative of \( \cot^{-1}(x) \), we have: \[ \frac{du}{dx} = -\frac{1}{1 + (\sqrt{x})^2} \cdot \frac{d}{dx}(\sqrt{x}) \] Now, differentiate \( \sqrt{x} \): \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] Thus, substituting this into our derivative of \( u \): \[ \frac{du}{dx} = -\frac{1}{1 + x} \cdot \frac{1}{2\sqrt{x}} = -\frac{1}{2\sqrt{x}(1 + x)} \] ### Step 4: Apply the chain rule Now, we can find \( \frac{dy}{dx} \) using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\cot^{-1}(\sqrt{x})}} \cdot \left(-\frac{1}{2\sqrt{x}(1 + x)}\right) \] ### Step 5: Simplify the expression This simplifies to: \[ \frac{dy}{dx} = -\frac{1}{4\sqrt{x}\sqrt{\cot^{-1}(\sqrt{x})}(1 + x)} \] ### Final Answer Thus, the derivative of \( y = \sqrt{\cot^{-1}(\sqrt{x})} \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{4\sqrt{x}\sqrt{\cot^{-1}(\sqrt{x})}(1 + x)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the principal values of each of the following: cot^(-1)(-sqrt(3)) (ii) cot^(-1)(sqrt(3))

Find the principal values of each of the following: cot^(-1)(-sqrt(3)) (ii) cot^(-1)(sqrt(3))

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

lim_(xrarroo) (cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x-1))^(x)})=

Find the derivative of the following function with respect to 'x' cot^(-1)(sqrt(1+x^2)+x)

Find the principal value of: cot^(-1)(sqrt(3))

The complete solution set of the equation sin^(-1) sqrt((1+x)/(2))-sqrt(2-x)=cot^(-1)(tan sqrt(2-x))-sin^(-1) sqrt((1-x)/(2)) is :

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos [tan^(-1) (cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

Differentiate sin^(-1)sqrt(1-x^2) with respect to cot^(-1)(x/sqrt(1-x^2)) if 0< x <1