Home
Class 12
MATHS
Differentiate w.r.t x (i) b tan ^(-1)(x/...

Differentiate w.r.t x
(i)` b tan ^(-1)(x/a+tan^(-1)"(x)/a)`
(ii) `(sin ^(-1)x)^(2)-(cos^(-1)x)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the given expressions with respect to \( x \), we will solve each part step by step. ### Part (i): Differentiate \( y = b \tan^{-1}\left(\frac{x}{a}\right) + \tan^{-1}\left(\frac{x}{a}\right) \) 1. **Identify the function**: \[ y = b \tan^{-1}\left(\frac{x}{a}\right) + \tan^{-1}\left(\frac{x}{a}\right) \] 2. **Differentiate using the chain rule**: The derivative of \( \tan^{-1}(u) \) is given by \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \). Here, \( u = \frac{x}{a} \). \[ \frac{dy}{dx} = b \cdot \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \frac{1}{a} + \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \frac{1}{a} \] 3. **Simplify the expression**: \[ \frac{dy}{dx} = \frac{b}{a(1 + \frac{x^2}{a^2})} + \frac{1}{a(1 + \frac{x^2}{a^2})} \] Combine the terms: \[ \frac{dy}{dx} = \frac{b + 1}{a(1 + \frac{x^2}{a^2})} \] 4. **Final expression**: \[ \frac{dy}{dx} = \frac{(b + 1)a^2}{a^2 + x^2} \] ### Part (ii): Differentiate \( y = (\sin^{-1} x)^2 - (\cos^{-1} x)^2 \) 1. **Identify the function**: \[ y = (\sin^{-1} x)^2 - (\cos^{-1} x)^2 \] 2. **Use the identity**: We know that \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \). Thus: \[ (\cos^{-1} x)^2 = \left(\frac{\pi}{2} - \sin^{-1} x\right)^2 \] 3. **Expand the expression**: \[ y = (\sin^{-1} x)^2 - \left(\frac{\pi}{2} - \sin^{-1} x\right)^2 \] Using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ y = \left(\sin^{-1} x - \left(\frac{\pi}{2} - \sin^{-1} x\right)\right)\left(\sin^{-1} x + \left(\frac{\pi}{2} - \sin^{-1} x\right)\right) \] Simplifying gives: \[ y = (2\sin^{-1} x - \frac{\pi}{2})\left(\frac{\pi}{2}\right) \] 4. **Differentiate**: \[ \frac{dy}{dx} = \frac{\pi}{2} \cdot 2 \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{\pi}{\sqrt{1 - x^2}} \] ### Final Answers: 1. For part (i): \[ \frac{dy}{dx} = \frac{(b + 1)a^2}{a^2 + x^2} \] 2. For part (ii): \[ \frac{dy}{dx} = \frac{\pi}{\sqrt{1 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x e^(5x)

Differentiate w.r.t x tan (x^2)

Differentiate w.r.t x sin^4x

Differentiate w.r.t x tan (sqrt(x))

Differentiate w.r.t x (x sin x)^(3)

Differentiate w.r.t x : sin (x^(3))

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t x e^("sin x")

Differentiate w.r.t x y = 8x^(8)

Differentiate w.r.t x sec (sec x)