Home
Class 12
MATHS
cos(a sin ^(-1)"1/x)...

`cos(a sin ^(-1)"1/x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos(a \sin^{-1}(\frac{1}{x})) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function We start with the function: \[ y = \cos(a \sin^{-1}(\frac{1}{x})) \] ### Step 2: Differentiate using the chain rule To differentiate \( y \) with respect to \( x \), we apply the chain rule. The derivative of \( \cos(u) \) is \( -\sin(u) \cdot \frac{du}{dx} \), where \( u = a \sin^{-1}(\frac{1}{x}) \). Thus, we have: \[ \frac{dy}{dx} = -\sin(a \sin^{-1}(\frac{1}{x})) \cdot \frac{d}{dx}(a \sin^{-1}(\frac{1}{x})) \] ### Step 3: Differentiate \( a \sin^{-1}(\frac{1}{x}) \) Next, we need to differentiate \( a \sin^{-1}(\frac{1}{x}) \). The derivative of \( \sin^{-1}(v) \) is \( \frac{1}{\sqrt{1 - v^2}} \cdot \frac{dv}{dx} \). Here, \( v = \frac{1}{x} \). First, we find \( \frac{dv}{dx} \): \[ v = \frac{1}{x} \implies \frac{dv}{dx} = -\frac{1}{x^2} \] Now, we can differentiate \( \sin^{-1}(\frac{1}{x}) \): \[ \frac{d}{dx}(\sin^{-1}(\frac{1}{x})) = \frac{1}{\sqrt{1 - (\frac{1}{x})^2}} \cdot \left(-\frac{1}{x^2}\right) \] \[ = -\frac{1}{x^2 \sqrt{1 - \frac{1}{x^2}}} \] \[ = -\frac{1}{x^2 \sqrt{\frac{x^2 - 1}{x^2}}} = -\frac{1}{\sqrt{x^2 - 1}} \cdot \frac{1}{x^2} \] ### Step 4: Combine the derivatives Now substituting back into the derivative of \( y \): \[ \frac{dy}{dx} = -\sin(a \sin^{-1}(\frac{1}{x})) \cdot a \left(-\frac{1}{\sqrt{x^2 - 1}} \cdot \frac{1}{x^2}\right) \] \[ = a \sin(a \sin^{-1}(\frac{1}{x})) \cdot \frac{1}{x^2 \sqrt{x^2 - 1}} \] ### Step 5: Final expression Thus, the final expression for the derivative is: \[ \frac{dy}{dx} = \frac{a \sin(a \sin^{-1}(\frac{1}{x}))}{x^2 \sqrt{x^2 - 1}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5d|51 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos (2 sin^(-1) x) = 1-2x^2

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

Solve for x : cos(2sin^(-1)x)=1/3

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Find the domain of f(x)=sqrt(cos^(-1)x-sin^(-1)x)

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Find : cos[2sin^(-1)√((1-x)/2) ]=

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :