Home
Class 12
MATHS
If ax^2+2hxy+by^2+2gx+2fy+c=0 then find ...

If `ax^2+2hxy+by^2+2gx+2fy+c=0` then find `dy/dx`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0\), we will differentiate both sides of the equation with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate the equation with respect to \(x\)**: \[ \frac{d}{dx}(ax^2) + \frac{d}{dx}(2hxy) + \frac{d}{dx}(by^2) + \frac{d}{dx}(2gx) + \frac{d}{dx}(2fy) + \frac{d}{dx}(c) = 0 \] 2. **Differentiate each term**: - For \(ax^2\): \[ \frac{d}{dx}(ax^2) = 2ax \] - For \(2hxy\) (using the product rule): \[ \frac{d}{dx}(2hxy) = 2h\left(x\frac{dy}{dx} + y\right) \] - For \(by^2\) (using the chain rule): \[ \frac{d}{dx}(by^2) = 2by\frac{dy}{dx} \] - For \(2gx\): \[ \frac{d}{dx}(2gx) = 2g \] - For \(2fy\) (using the chain rule): \[ \frac{d}{dx}(2fy) = 2f\frac{dy}{dx} \] - For \(c\) (constant): \[ \frac{d}{dx}(c) = 0 \] 3. **Combine the derivatives**: \[ 2ax + 2h\left(x\frac{dy}{dx} + y\right) + 2by\frac{dy}{dx} + 2g + 2f\frac{dy}{dx} = 0 \] 4. **Rearranging the equation**: \[ 2ax + 2hy + 2g + (2hx + 2by + 2f)\frac{dy}{dx} = 0 \] 5. **Isolate \(\frac{dy}{dx}\)**: \[ (2hx + 2by + 2f)\frac{dy}{dx} = - (2ax + 2hy + 2g) \] 6. **Solve for \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = -\frac{2(ax + hy + g)}{2(hx + by + f)} \] 7. **Simplify the expression**: \[ \frac{dy}{dx} = -\frac{ax + hy + g}{hx + by + f} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{ax + hy + g}{hx + by + f} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If the pair of lines ax^2 +2hxy+ by^2+ 2gx+ 2fy +c=0 intersect on the y-axis then

If a x^2+2\ h x y+b y^2+2\ gx+2\ fy+c=0 , find (dy)/(dx) and (dx)/(dy) . Also, show that (dy)/(dx)dot(dx)/(dy)=1 .

If a x^2+2\ h x y+b y^2+2\ gx+2\ fy+c=0 , find (dy)/(dx) .

If two curves whose equations are ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 and a'x^2 + 2h'xy + b'y^2 + 2g' x + 2f' y + c = 0 intersect in four concyclic point., then prove that a-b/h = a'-b'/h'

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 , then show that (dy)/(dx).(dx)/(dy) = 1 .

If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents two parallel straight lines, then

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

Find the area of the triangle formed by the lines represented by ax^2+2hxy+by^2+2gx+2fy+c=0 and axis of x .

If u-=ax^2+2hxy+by^2+2gx+2fy+c=0 represents a pair of straight lines , prove that the equation of the third pair of straight lines passing through the points where these meet the axes is ax^2 −2hxy+by 2 +2gx+2fy+c+ c 4fg ​ xy=0.

If ax^(2)+2hxy+by^(2)=0 then (dy)/(dx) is