Home
Class 12
MATHS
If x^(2//3)+y^(2//3)=a^(2//3) , find (dy...

If `x^(2//3)+y^(2//3)=a^(2//3)` , find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}\), we will differentiate both sides with respect to \(x\). Let's go through the steps: ### Step 1: Differentiate both sides of the equation The given equation is: \[ x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}} \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(x^{\frac{2}{3}}) + \frac{d}{dx}(y^{\frac{2}{3}}) = \frac{d}{dx}(a^{\frac{2}{3}}) \] ### Step 2: Apply the power rule Using the power rule for differentiation, we get: \[ \frac{2}{3}x^{-\frac{1}{3}} + \frac{2}{3}y^{-\frac{1}{3}} \frac{dy}{dx} = 0 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{2}{3}y^{-\frac{1}{3}} \frac{dy}{dx} = -\frac{2}{3}x^{-\frac{1}{3}} \] ### Step 4: Solve for \(\frac{dy}{dx}\) Dividing both sides by \(\frac{2}{3}y^{-\frac{1}{3}}\): \[ \frac{dy}{dx} = -\frac{x^{-\frac{1}{3}}}{y^{-\frac{1}{3}}} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y=x^(3/2) find dy/dx

If y=(sqrt(1-x^2)(2x-3)^(1//2))/((x^2+2)^(2//3)) , find (dy)/(dx) .

Given that y= (3x -1)^(2) + (2x -1)^(3) , find (dy)/( dx) and the points on the curve for which (dy)/(dx)=0

If x^2+2x y+y^3=42 , find (dy)/(dx)

If y=(3a^(2)x-x^(3))/(a^(3)-3ax^(2)) then find (dy)/(dx)

y=(5x)^(3cos 2x) then find (dy)/(dx) .

y=(x^2+1/x^2)^3 find dy/dx

If y= (x^2 +3)/( x^3 + 2x) , find (dy)/( dx) at x=1 .

Given that y=(3x-1)^(2)+(2x-1)^(3) , find (dy)/(dx) and points on the curve for which (dy)/(dx)=0 .

If y^3-3x y^2=x^3+3x^2\ y , find (dy)/(dx)