Home
Class 12
MATHS
xsin 2y = y cos 2x...

xsin 2y = y cos 2x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x \sin(2y) = y \cos(2x) \) and find \(\frac{dy}{dx}\), we will differentiate both sides with respect to \(x\). Here’s the step-by-step solution: ### Step 1: Differentiate both sides We start with the equation: \[ x \sin(2y) = y \cos(2x) \] Now, we differentiate both sides with respect to \(x\). ### Step 2: Apply the product rule For the left-hand side \(x \sin(2y)\), we apply the product rule: \[ \frac{d}{dx}(x \sin(2y)) = \sin(2y) \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\sin(2y)) \] The derivative of \(x\) is \(1\), and for \(\sin(2y)\), we use the chain rule: \[ \frac{d}{dx}(\sin(2y)) = \cos(2y) \cdot \frac{d}{dx}(2y) = 2 \cos(2y) \cdot \frac{dy}{dx} \] Thus, the left-hand side becomes: \[ \sin(2y) + 2x \cos(2y) \frac{dy}{dx} \] ### Step 3: Differentiate the right-hand side Now, for the right-hand side \(y \cos(2x)\), we again apply the product rule: \[ \frac{d}{dx}(y \cos(2x)) = \cos(2x) \cdot \frac{d}{dx}(y) + y \cdot \frac{d}{dx}(\cos(2x)) \] The derivative of \(\cos(2x)\) is: \[ \frac{d}{dx}(\cos(2x)) = -\sin(2x) \cdot \frac{d}{dx}(2x) = -2 \sin(2x) \] Thus, the right-hand side becomes: \[ \cos(2x) \frac{dy}{dx} - 2y \sin(2x) \] ### Step 4: Set both sides equal Now we have: \[ \sin(2y) + 2x \cos(2y) \frac{dy}{dx} = \cos(2x) \frac{dy}{dx} - 2y \sin(2x) \] ### Step 5: Collect terms involving \(\frac{dy}{dx}\) Rearranging gives: \[ 2x \cos(2y) \frac{dy}{dx} - \cos(2x) \frac{dy}{dx} = -2y \sin(2x) - \sin(2y) \] Factoring out \(\frac{dy}{dx}\): \[ \left(2x \cos(2y) - \cos(2x)\right) \frac{dy}{dx} = -2y \sin(2x) - \sin(2y) \] ### Step 6: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-2y \sin(2x) - \sin(2y)}{2x \cos(2y) - \cos(2x)} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{-2y \sin(2x) - \sin(2y)}{2x \cos(2y) - \cos(2x)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x cos A + y sin A = m and x sin A - y cos A = n, then prove that : x^(2) + y^(2) = m^(2) + n^(2)

Let x, y, in R satisfy the condition such that sin x sin y + 3 cos y +4 sin y cos x=sqrt(26) . The value of tan^(2)x + cot^(2)y is equal to

Prove that : (cos x + cos y)^2 + (sin x - sin y)^2 = 4 cos^2\ (x+y)/2

If tan "" (x-y)/( 2 ), tan z, tan "" (x + y)/( 2) are in G.P. then show that cos x = cos y. cos 2z

Solve: (dy)/(dx)+xsin2y=x^3cos^2y

(dy)/(dx)+xsin2y=x^(3)cos^(2)y

Solve the equation (dy)/(dx)+xsin2y=x^3cos^2y

Solve the following system of equations. sin x + cos y=1, cos 2x-cos 2y=1

If sin A + sin 2A = x and cos A + cos 2A = y, then (x^(2)+y^(2)) (x^(2)+y^(2)-3)=

Solve the differential equation: x \ cos^2y\ dx=y \ cos^2x\ dy