Home
Class 12
MATHS
e^xlogy=sin^(-1)x+sin^(-1)y...

`e^xlogy=sin^(-1)x+sin^(-1)y`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the given expression \( e^x \log y = \sin^{-1} x + \sin^{-1} y \) with respect to \( x \), we will follow these steps: ### Step 1: Differentiate both sides We start by differentiating both sides of the equation with respect to \( x \): \[ \frac{d}{dx}(e^x \log y) = \frac{d}{dx}(\sin^{-1} x + \sin^{-1} y) \] ### Step 2: Apply the product rule on the left side The left side involves a product of two functions \( e^x \) and \( \log y \). We apply the product rule: \[ \frac{d}{dx}(e^x \log y) = e^x \frac{d}{dx}(\log y) + \log y \frac{d}{dx}(e^x) \] The derivative of \( \log y \) with respect to \( x \) is \( \frac{1}{y} \frac{dy}{dx} \) (using the chain rule), and the derivative of \( e^x \) is \( e^x \): \[ = e^x \left(\frac{1}{y} \frac{dy}{dx}\right) + \log y \cdot e^x \] ### Step 3: Differentiate the right side Now, we differentiate the right side: \[ \frac{d}{dx}(\sin^{-1} x + \sin^{-1} y) = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - y^2}} \frac{dy}{dx} \] ### Step 4: Set the derivatives equal Now we set the derivatives from both sides equal to each other: \[ e^x \left(\frac{1}{y} \frac{dy}{dx}\right) + \log y \cdot e^x = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - y^2}} \frac{dy}{dx} \] ### Step 5: Collect terms involving \( \frac{dy}{dx} \) Rearranging the equation to isolate \( \frac{dy}{dx} \): \[ e^x \frac{1}{y} \frac{dy}{dx} - \frac{1}{\sqrt{1 - y^2}} \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} - \log y \cdot e^x \] ### Step 6: Factor out \( \frac{dy}{dx} \) Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left(e^x \frac{1}{y} - \frac{1}{\sqrt{1 - y^2}}\right) = \frac{1}{\sqrt{1 - x^2}} - \log y \cdot e^x \] ### Step 7: Solve for \( \frac{dy}{dx} \) Now, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{1}{\sqrt{1 - x^2}} - \log y \cdot e^x}{e^x \frac{1}{y} - \frac{1}{\sqrt{1 - y^2}}} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{y \left(\frac{1}{\sqrt{1 - x^2}} - \log y \cdot e^x\right)}{e^x \sqrt{1 - y^2} - y} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5i|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5f|31 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The differential sin^(-1) x + sin^(-1) y = 1 , is

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot

Let x ,\ y ,\ z in [-1,\ 1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 . Find the value of x^(2018)+y^(2019)+z^(2020)