Home
Class 12
MATHS
Differentiate tan^(-1)((2x)/(1-x^2)) wit...

Differentiate `tan^(-1)((2x)/(1-x^2))` with respect to `sin^(-1)((2x)/(1+x^2))` , if `x in (-1,\ 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) with respect to \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \), we can follow these steps: ### Step 1: Define the Functions Let: - \( u = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) - \( v = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) ### Step 2: Simplify the Functions Using trigonometric identities, we can express \( u \) and \( v \) in terms of \( \tan^{-1}(x) \): - The expression \( \frac{2x}{1-x^2} \) can be recognized as \( \tan(2\theta) \) where \( \theta = \tan^{-1}(x) \). Thus, we can write: \[ u = \tan^{-1}\left(\frac{2\tan(\theta)}{1 - \tan^2(\theta)}\right) = 2\theta = 2\tan^{-1}(x) \] - Similarly, for \( v \), using the identity for sine: \[ \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \sin(2\theta) \] Thus, we can write: \[ v = \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) = 2\theta = 2\tan^{-1}(x) \] ### Step 3: Differentiate \( u \) and \( v \) Now we differentiate \( u \) and \( v \) with respect to \( x \): - For \( u \): \[ \frac{du}{dx} = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2} \] - For \( v \): \[ \frac{dv}{dx} = 2 \cdot \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{d}{dx}\left(\frac{2x}{1+x^2}\right) \] To find \( \frac{d}{dx}\left(\frac{2x}{1+x^2}\right) \): \[ \frac{d}{dx}\left(\frac{2x}{1+x^2}\right) = \frac{(1+x^2)(2) - 2x(2x)}{(1+x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1+x^2)^2} = \frac{2 - 2x^2}{(1+x^2)^2} \] Thus, \[ \frac{dv}{dx} = 2 \cdot \frac{1}{\sqrt{1 - \left(\frac{2x}{1+x^2}\right)^2}} \cdot \frac{2(1-x^2)}{(1+x^2)^2} \] ### Step 4: Calculate \( \frac{du}{dv} \) Now, we need to find \( \frac{du}{dv} \): \[ \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{2}{1+x^2}}{\frac{dv}{dx}} \] Since both \( u \) and \( v \) simplify to \( 2\tan^{-1}(x) \), we can conclude: \[ \frac{du}{dv} = 1 \] ### Final Result Thus, the derivative of \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) with respect to \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) is: \[ \frac{du}{dv} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5m|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x

Differentiate tan^(-1)((a+x)/(1-a x)) with respect to x

Differentiate sin^(-1)((2x)/(1+x^2))

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)),

Differentiate tan^(-1)(x/(1+6\ x^2)) with respect to x

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)x .

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2x)/(1-x^2)), if -1

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)),

Differentiate tan^-1""((2x)/(1-x^2)) with respect to cos ^-1 ((1-x^2)/(1+x^2))