Home
Class 12
MATHS
Differentiate sec^-1""(1)/(2x^2-1) with...

Differentiate `sec^-1""(1)/(2x^2-1)` with respect to `sqrt(1-x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( u = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( v = \sqrt{1 - x^2} \), we will use the chain rule. The steps are as follows: ### Step 1: Define the functions Let: - \( u = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) - \( v = \sqrt{1 - x^2} \) ### Step 2: Differentiate \( u \) with respect to \( x \) To find \( \frac{du}{dx} \), we need to differentiate \( u \): Using the chain rule for \( \sec^{-1}(x) \): \[ \frac{du}{dx} = \frac{1}{\sqrt{(2x^2 - 1)^2 - 1}} \cdot \frac{d}{dx}\left(\frac{1}{2x^2 - 1}\right) \] Now, differentiate \( \frac{1}{2x^2 - 1} \): \[ \frac{d}{dx}\left(\frac{1}{2x^2 - 1}\right) = -\frac{2x}{(2x^2 - 1)^2} \] Thus, \[ \frac{du}{dx} = \frac{-2x}{(2x^2 - 1)^2 \sqrt{(2x^2 - 1)^2 - 1}} \] ### Step 3: Differentiate \( v \) with respect to \( x \) Next, we differentiate \( v \): \[ v = (1 - x^2)^{1/2} \] Using the power rule: \[ \frac{dv}{dx} = \frac{1}{2}(1 - x^2)^{-1/2} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \] ### Step 4: Apply the chain rule Now we use the chain rule to find \( \frac{du}{dv} \): \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{\frac{-2x}{(2x^2 - 1)^2 \sqrt{(2x^2 - 1)^2 - 1}}}{\frac{-x}{\sqrt{1 - x^2}}} \] The \( -x \) cancels out: \[ \frac{du}{dv} = \frac{2}{(2x^2 - 1)^2 \sqrt{(2x^2 - 1)^2 - 1}} \cdot \sqrt{1 - x^2} \] ### Step 5: Simplify the expression The expression can be simplified further, but we can stop here as we have found \( \frac{du}{dv} \). ### Final Result Thus, the derivative \( \frac{du}{dv} \) is: \[ \frac{du}{dv} = \frac{2\sqrt{1 - x^2}}{(2x^2 - 1)^2 \sqrt{(2x^2 - 1)^2 - 1}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5l|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5m|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5j|14 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((1-x)/(1+x)) with respect to sqrt(1-x^2) , if -1 < x < 1 .

Differentiate sin^(-1)sqrt(1-x^2) with respect to x

Differentiate sqrt((1-x^2)/(1+x^2)) with respect to x .

Differentiate sin^(-1)(1/(sqrt(1+x^2))) with respect to x

Differentiate (2x+5)/(x^(2)-1) with respect to 'x'.

Differentiate tan^-1""((2x)/(1-x^2)) with respect to cos ^-1 ((1-x^2)/(1+x^2))

Differentiate sqrt(tan^(-1)(x/2)) with respect to x :

Differentiate tan^(-1)((1+a x)/(1-a x)) with respect to sqrt(1+a^2x^2)dot

Differentiate sin^(-1)(2a xsqrt(1-a^2x^2)) with respect to sqrt(1-a^2x^2) , if -1/(sqrt(2)) < ax<1/(sqrt(2)) .

Differentiate sin ^(-1) (1/sqrt(1+x^2)) with respect to 'x'