Home
Class 12
MATHS
The function f(x)= {(5x-4 ", " 0 ...

The function `f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}`

A

continuous at x=1

B

discontinuous at x= 1

C

continuous at x= 2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at the points \( x = 1 \) and \( x = 2 \), we will follow these steps: ### Step 1: Define the function The function is defined as: \[ f(x) = \begin{cases} 5x - 4 & \text{for } 0 < x \leq 1 \\ 4x^3 - 3x & \text{for } 1 < x < 2 \end{cases} \] ### Step 2: Check continuity at \( x = 1 \) To check continuity at \( x = 1 \), we need to evaluate the left-hand limit, right-hand limit, and the function value at \( x = 1 \). #### Step 2.1: Calculate the left-hand limit as \( x \) approaches 1 \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (5x - 4) \] Substituting \( x = 1 \): \[ = 5(1) - 4 = 5 - 4 = 1 \] #### Step 2.2: Calculate the right-hand limit as \( x \) approaches 1 \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4x^3 - 3x) \] Substituting \( x = 1 \): \[ = 4(1)^3 - 3(1) = 4 - 3 = 1 \] #### Step 2.3: Calculate the function value at \( x = 1 \) Since \( f(x) \) is defined for \( 0 < x \leq 1 \): \[ f(1) = 5(1) - 4 = 1 \] ### Step 3: Compare the limits and function value We have: \[ \lim_{x \to 1^-} f(x) = 1, \quad \lim_{x \to 1^+} f(x) = 1, \quad f(1) = 1 \] Since both limits are equal and equal to the function value, we conclude that: \[ f(x) \text{ is continuous at } x = 1 \] ### Step 4: Check continuity at \( x = 2 \) To check continuity at \( x = 2 \), we need to evaluate the left-hand limit and the function value at \( x = 2 \). #### Step 4.1: Calculate the left-hand limit as \( x \) approaches 2 \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (4x^3 - 3x) \] Substituting \( x = 2 \): \[ = 4(2)^3 - 3(2) = 4(8) - 6 = 32 - 6 = 26 \] #### Step 4.2: Calculate the function value at \( x = 2 \) The function \( f(x) \) is not defined at \( x = 2 \) since it is only defined for \( 1 < x < 2 \). ### Step 5: Conclusion for continuity at \( x = 2 \) Since the left-hand limit as \( x \) approaches 2 is 26 and the function is not defined at \( x = 2 \), we conclude that: \[ f(x) \text{ is discontinuous at } x = 2 \] ### Final Answer - The function \( f(x) \) is continuous at \( x = 1 \). - The function \( f(x) \) is discontinuous at \( x = 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5p|20 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.1|34 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5n|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The function f(x) ={{:( 5x-4, " for " 0 lt x le 1) ,( 4x^(2) - 3x, " for" 1 lt x lt 2 ),( 3x + 4 , "for" x ge2):}is

Show that the function f (x)={ {:(3x^(2) + 12 x - 1,- 1 le x le 2 ),(" "37 - x," "2 lt x le 3 ):} is continuous at x = 2

Find the inverse of each of the following functions : f(x) = {{:(x"," -oo lt x lt 1),(x^(2)"," 1 le x le 4),(2x"," 4 lt x lt oo):}

Check the continuity of f(x) = {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

The points of discontinuity of the function f (x) = {{:(3x + 1"," ,0 le x lt2),(4x - 1"," ,2 lt x le 6),(5x + 2",", 6 lt x le 10 ):} are:

Discuss continuity of f(x)= {{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if 1 lt x le 2):} at x = 1

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

Graph the function f(x)={(3-x^(2), "if " x lt 1),(x^(3)-4x,"if "x ge 1):}

3(1 - x ) lt 2 (x + 4)

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5o
  1. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  2. Prove that the function defined by f(x) = t a n xis a continuous func...

    Text Solution

    |

  3. The function f(x)= {(2 ax ", " x le 3 ),( 3x +1 ", " x gt 3):}...

    Text Solution

    |

  4. The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuo...

    Text Solution

    |

  5. The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 l...

    Text Solution

    |

  6. Show that the function f(x)=2x-|x| is continuous at x=0 .

    Text Solution

    |

  7. The value of 'k' for which f(x)= {(kx^2", " x ge 2 ),(12", ...

    Text Solution

    |

  8. The value of k for which f(x)= {((1-cos 2x )/(x^2 )", " x ne 0 ),(...

    Text Solution

    |

  9. If the function f(x)= {(3ax +b", " x gt 1 ),(11 ", "x=...

    Text Solution

    |

  10. The value of 'a' for which f(x)= {((sin^2 ax)/(x^2)", " x ne 0 ),(...

    Text Solution

    |

  11. If y= sin ^-1\ (1)/(sqrt(1+x^2)) then dy/dx at x =0 is :

    Text Solution

    |

  12. If y=(x)/(x+5), then prove that x (dy)/(dx) = y(1 - y)

    Text Solution

    |

  13. If x^y=e^(x-y) , then (dy)/(dx) is (1+x)/(1+logx) (b) (1-logx)/(1+logx...

    Text Solution

    |

  14. If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

    Text Solution

    |

  15. If y= tan^-1((1-x)/(1+x))+cot^-1((1-x)/(1+x)) then dy/dx= ?

    Text Solution

    |

  16. If y=sin^(-1)((1-x^2)/(1+x^2)) , then (dy)/(dx)= -2/(1+x^2) (b) 2/(1+...

    Text Solution

    |

  17. If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s x/(2y-1)...

    Text Solution

    |

  18. Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2...

    Text Solution

    |

  19. If f(x)= x^2+7x+10 then f'(2) =?

    Text Solution

    |

  20. At which point the slope to tangent is zero for the curvey y=x^2-6x+8 ...

    Text Solution

    |