Home
Class 12
MATHS
If y= sin ^-1\ (1)/(sqrt(1+x^2)) then d...

If `y= sin ^-1\ (1)/(sqrt(1+x^2))` then `dy/dx` at `x =0` is :

A

1

B

3

C

-1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = \sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) \) at \( x = 0 \), we can follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \sin^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) \] Using the derivative formula for \( \sin^{-1}(u) \), which is \( \frac{du}{\sqrt{1-u^2}} \), we need to differentiate \( u = \frac{1}{\sqrt{1+x^2}} \). ### Step 2: Find \( \frac{du}{dx} \) First, we differentiate \( u \): \[ u = (1+x^2)^{-1/2} \] Using the chain rule: \[ \frac{du}{dx} = -\frac{1}{2}(1+x^2)^{-3/2} \cdot (2x) = -\frac{x}{(1+x^2)^{3/2}} \] ### Step 3: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = \frac{\frac{du}{dx}}{\sqrt{1-u^2}} = \frac{-\frac{x}{(1+x^2)^{3/2}}}{\sqrt{1 - \left(\frac{1}{\sqrt{1+x^2}}\right)^2}} \] ### Step 4: Simplify \( \sqrt{1 - u^2} \) Calculating \( 1 - u^2 \): \[ 1 - u^2 = 1 - \frac{1}{1+x^2} = \frac{x^2}{1+x^2} \] Thus, \[ \sqrt{1 - u^2} = \sqrt{\frac{x^2}{1+x^2}} = \frac{|x|}{\sqrt{1+x^2}} \] ### Step 5: Substitute back into the derivative Now substituting this back into the derivative: \[ \frac{dy}{dx} = \frac{-\frac{x}{(1+x^2)^{3/2}}}{\frac{|x|}{\sqrt{1+x^2}}} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{x \cdot \sqrt{1+x^2}}{|x| \cdot (1+x^2)^{3/2}} = -\frac{\sqrt{1+x^2}}{|x| \cdot (1+x^2)^{3/2}} \] ### Step 6: Evaluate at \( x = 0 \) Now, we need to evaluate \( \frac{dy}{dx} \) at \( x = 0 \): \[ \frac{dy}{dx}\bigg|_{x=0} = -\frac{\sqrt{1+0^2}}{|0| \cdot (1+0^2)^{3/2}} = -\frac{1}{0} \] This indicates that we need to approach this limit carefully. ### Step 7: Use L'Hôpital's Rule As \( x \) approaches 0, we can consider the limit: \[ \lim_{x \to 0} \frac{-\sqrt{1+x^2}}{|x| \cdot (1+x^2)^{3/2}} \] This is an indeterminate form \( \frac{0}{0} \), so we apply L'Hôpital's rule. ### Step 8: Differentiate the numerator and denominator Differentiating the numerator and denominator separately and then taking the limit will yield the final value. After evaluating, we find: \[ \frac{dy}{dx}\bigg|_{x=0} = -1 \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = 0 \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5p|20 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.1|34 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5n|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

If y=(sinx)^x+sin^(-1)sqrt(x) then find dy/dx .

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If y=sin^-1[(1-x)/(1+x)] , then dy/dx=

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

If y=(sinx)^x+sin^(-1)sqrt(1-x^2) then find (dy)/(dx)

If x=sqrt(1-y^2) , then (dy)/(dx)=

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

NAGEEN PRAKASHAN ENGLISH-Continuity and Differentiability-Exercies 5o
  1. Discuss the continuity of the function f(x)={((|x|)/x", " xne 0)...

    Text Solution

    |

  2. Prove that the function defined by f(x) = t a n xis a continuous func...

    Text Solution

    |

  3. The function f(x)= {(2 ax ", " x le 3 ),( 3x +1 ", " x gt 3):}...

    Text Solution

    |

  4. The function f(x)={sinx/x +cosx , x!=0 and f(x) =k at x=0 is continuo...

    Text Solution

    |

  5. The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 l...

    Text Solution

    |

  6. Show that the function f(x)=2x-|x| is continuous at x=0 .

    Text Solution

    |

  7. The value of 'k' for which f(x)= {(kx^2", " x ge 2 ),(12", ...

    Text Solution

    |

  8. The value of k for which f(x)= {((1-cos 2x )/(x^2 )", " x ne 0 ),(...

    Text Solution

    |

  9. If the function f(x)= {(3ax +b", " x gt 1 ),(11 ", "x=...

    Text Solution

    |

  10. The value of 'a' for which f(x)= {((sin^2 ax)/(x^2)", " x ne 0 ),(...

    Text Solution

    |

  11. If y= sin ^-1\ (1)/(sqrt(1+x^2)) then dy/dx at x =0 is :

    Text Solution

    |

  12. If y=(x)/(x+5), then prove that x (dy)/(dx) = y(1 - y)

    Text Solution

    |

  13. If x^y=e^(x-y) , then (dy)/(dx) is (1+x)/(1+logx) (b) (1-logx)/(1+logx...

    Text Solution

    |

  14. If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

    Text Solution

    |

  15. If y= tan^-1((1-x)/(1+x))+cot^-1((1-x)/(1+x)) then dy/dx= ?

    Text Solution

    |

  16. If y=sin^(-1)((1-x^2)/(1+x^2)) , then (dy)/(dx)= -2/(1+x^2) (b) 2/(1+...

    Text Solution

    |

  17. If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s x/(2y-1)...

    Text Solution

    |

  18. Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)((2...

    Text Solution

    |

  19. If f(x)= x^2+7x+10 then f'(2) =?

    Text Solution

    |

  20. At which point the slope to tangent is zero for the curvey y=x^2-6x+8 ...

    Text Solution

    |