Home
Class 12
MATHS
y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 ...

`y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1`

Text Solution

AI Generated Solution

To solve the problem \( y = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \) for \( 0 < x < 1 \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Substitute \( x \) with \( \tan(\theta) \) Let \( x = \tan(\theta) \). This substitution will help us simplify the expression involving the inverse cosine function. ### Step 2: Rewrite \( y \) in terms of \( \theta \) Using the identity for tangent, we can rewrite: \[ ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1 find dy/dx

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^2)/(1+x^2)) , 0 lt x lt 1

Prove that cos^(-1) ((1 - x^(2n))/(1 + x^(2n))) = 2 tan^(-1) x^(n), 0 lt x lt oo

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2))) equals

Differentiate the following function with respect to x : cos^(-1){(x+sqrt(1-x^2))/(sqrt(2))}; -1 lt x lt 1

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

Differentiate cos^(-1)((1-x^2)/(1+x^2)) , 0lt xlt1 with respect to x

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Differentiate the following function with respect to x : t a n^(-1)((2^(x+1))/(1-4^x)) , 0 lt x lt oo