Home
Class 12
MATHS
y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0...

`y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1` find dy/dx

Text Solution

AI Generated Solution

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \) where \( 0 < x < 1 \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \tan \theta \) Let \( x = \tan \theta \). Then, we have: \[ \theta = \tan^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^2)/(1+x^2)) , 0 lt x lt 1

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

If y=sin^(-1)(sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

If y=log((1-x^(2))/(1+x^(2))),|x|lt1 , then (dy)/(dx) =

Find (dy)/(dx) in the following: y=sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2)) lt x lt 1/(sqrt(2))

Differentiate the following function with respect to x : cos^(-1){(x+sqrt(1-x^2))/(sqrt(2))}; -1 lt x lt 1

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .