Home
Class 12
MATHS
y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x l...

`y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1`. find dy/dx

Text Solution

AI Generated Solution

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \cos^{-1}\left(\frac{2x}{1 + x^2}\right) \) in the interval \( -1 < x < 1 \), we will use the following steps: ### Step 1: Substitute \( x \) with \( \tan \theta \) Let \( x = \tan \theta \). Then, we can express \( \theta \) as: \[ \theta = \tan^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1 find dy/dx

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Find (dy)/(dx) in the following: y=cos^(-1)((2x)/(1+x^2)),-1 < x < 1

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

Find (dy)/(dx) in the following: y=sin^(-1)((1-x^2)/(1+x^2)) , 0 lt x lt 1

Differentiate cos^(-1)((1-x^2)/(1+x^2)) , 0lt xlt1 with respect to x

If y=cos^(-1)((3x+4\ sqrt(1-x^2))/5) , find (dy)/(dx)

If cos^-1((x)/sqrt(1+x^2)) then find dy/dx

If y = cos^(-1)(2x)+2cos^(-1)sqrt(1-4x^2) , -1/2ltxlt0 , find (dy)/(dx)