Home
Class 12
MATHS
y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sq...

`y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sqrt(2))`

Text Solution

Verified by Experts

`y = sec^(-1)((1)/(2x^(2) -1 ))`
Let x = cos theta
`rArr theta cos ^(-1) x `
`rArr y sec ^(-1)((1)/(2 cos^(2)theta-1))`
`= sec^(-1)((1)/(cos2 theta))`
= `sec^(-1)(sec2 theta)`
`= 2theta = 2 cos ^(-1)x `
`rArr (dy)/(dx)=2(d)/(dx) cos ^(-1)x = - (2)/(sqrt(1 - x ^(2)))`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)), ="" then="" find="" (dy)/(dx)

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

If y=sec^(-1)(1/(2x^2-1));0

Differentiate sec^(-1)(1/(2x^2-1)),\ 0

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)) , u in (0,1/sqrt2)uu(1/sqrt2,1) , prove that 2dy/dx+ 1 = 0 .

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)),0ltxlt1, prove that (dy)/ (dx)="4/(1+x^2)