Home
Class 12
MATHS
"log" ("log"x), x gt 1...

`"log" ("log"x), x gt 1`

Text Solution

Verified by Experts

`"Let"y = "log" ("log"x)`
`rArr (dy)/(dx) = (d)/(dx) "log" ("log"x)`
`=(1)/("log"x)*(d)/(dx)"log"x = (1)/( x "log" x)`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.6|11 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.3|15 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(log x)^(log x),x gt1

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

Find (dy)/(dx) when y= (x^(log x)) ( log x)^(x), x gt 1

If "log"_(a) x xx "log"_(5)a = "log"_(x) 5, a ne 1, a gt 0, " then "x =

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

Statement-1: "log"_(10)x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x Statement-2: x lt y rArr "log"_(a) x gt "log"_(a) y " when " 0 lt a lt 1

Find x if log_(2) log_(1//2) log_(3) x gt 0

The values of x satisfying x^("log"_(5)) gt5 lie in the interval

The value of int x log x (log x - 1) dx is equal to