Home
Class 12
MATHS
If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(c...

If `x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t)` show that `dy/dx =0 ` at ` t=pi/6`

Text Solution

AI Generated Solution

To show that \(\frac{dy}{dx} = 0\) at \(t = \frac{\pi}{6}\) for the given functions \(x = \frac{\sin^3 t}{\sqrt{\cos 2t}}\) and \(y = \frac{\cos^3 t}{\sqrt{\cos 2t}}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We have: \[ x = \frac{\sin^3 t}{\sqrt{\cos 2t}} \] ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.7|17 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.5|18 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), show that at pi/4,(dy)/(dx)=b/adot

If x = a sin2t(1+cos2t) and y =b cos 2t(1-cos2t) , then show that ((dy)/(dx))_(t=pi//4) = (b)/(a) .

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), find the values of (dy)/(dx) at t=pi/4 and t=pi/3dot

If x=sqrt(a^sin^(-1t) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t) , show that at t=pi/4 , (dy)/(dx)=b/a .

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)=-y/x

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Show that (dy)/(dx)=-y/x .

x=sqrt(sin 2t),y=sqrt(cos 2 t) find dy/dx