Home
Class 12
MATHS
"If "x=sqrt(a^(sin-1(t))),y=sqrt(a^(cos^...

`"If "x=sqrt(a^(sin-1_(t))),y=sqrt(a^(cos^(-1_(t)))),agt0 and -1 lt t lt 1," show that "(dy)/(dx)=-(y)/(x).`

Text Solution

Verified by Experts

`x = sqrt(a^("sin"^(-1)t))`
`(dx)/(dt) = (1)/(2sqrt(a^("sin"^(-1)t))) * a^("sin"^(-1)t) * "log"a * (1)/(1-t^(2))`
`= (1)/(2)sqrt(a^("sin"^(-1)t)) * "log"a * (1)/(sqrt(1-t^(2)))`
`= (x)/(2) * "log"a * (1)/(sqrt(1-t^(2)))`
`"Now " y= sqrt(a^("cos"^(-1)t))`
`rArr (dy)/(dt) = (1)/(2sqrt(a^("cos"^(-1)t))) * a^("cos"^(-1)t) * "log"a * ((1))/sqrt(1-t^(2))`
`= (-1)/(2) * sqrt(a^("cos"^(-1)t)) * "log"a * (1)/sqrt(1-t^(2))`
`= (-y)/(2) * "log"a * (1)/sqrt(1-t^(2))`
`therefore (dy)/(dx) = (dy//dt)/(dx//dt) = ((-y)/(2) "log" a * (1)/(sqrt(1-t^(2))))/((x)/(2)"log"a * (1)/(sqrt(1-t^(2)))) = (-y)/(x)`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.7|17 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.8|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5.5|18 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin^(-1)t)),y=sqrt(a^(cos^(-1)t) , a >0 a n d -1 < t < 1 , show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Show that (dy)/(dx)=-y/x .

If x=sqrt(a^sin^(-1t) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^-1t)) , y=sqrt(a^(cos^-1t)) , then (dy)/(dx)=.........

If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t) then show that, dy/dx=-y/x.

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

If y=e^(a cos^(-1)x)\ ,\ -1\ lt=xlt=1, show that (1-x^2)(d^2y)/(dx^2)-\ x(dy)/(dx)-\ a^2y=0