Home
Class 12
MATHS
(i)intsec^(7) x. sin x dx" "(ii) int...

`(i)intsec^(7) x. sin x dx" "(ii) int(1)/(sinx. cos^(2) x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### (i) Evaluate the integral \( I_1 = \int \sec^7 x \sin x \, dx \) 1. **Substitution**: We know that \( \sec x = \frac{1}{\cos x} \) and \( \sin x = \sqrt{1 - \cos^2 x} \). Thus, we can rewrite the integral: \[ I_1 = \int \sec^7 x \sin x \, dx = \int \frac{\sin x}{\cos^7 x} \, dx \] 2. **Let \( t = \cos x \)**: Then, \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). Substituting these into the integral gives: \[ I_1 = \int \frac{-dt}{t^7} = -\int t^{-7} \, dt \] 3. **Integrate**: Using the power rule for integration: \[ -\int t^{-7} \, dt = -\left( \frac{t^{-6}}{-6} \right) + C = \frac{1}{6} t^{-6} + C \] 4. **Back Substitute**: Replace \( t \) back with \( \cos x \): \[ I_1 = \frac{1}{6} \cos^{-6} x + C = \frac{1}{6 \cos^6 x} + C \] ### Final Result for (i): \[ I_1 = \frac{1}{6 \cos^6 x} + C \] --- ### (ii) Evaluate the integral \( I_2 = \int \frac{1}{\sin x \cos^2 x} \, dx \) 1. **Rewrite the Integral**: We can multiply the numerator and denominator by \( \sin x \): \[ I_2 = \int \frac{\sin x}{\sin^2 x \cos^2 x} \, dx = \int \frac{\sin x}{(1 - \cos^2 x) \cos^2 x} \, dx \] 2. **Let \( u = \cos x \)**: Then, \( du = -\sin x \, dx \) or \( \sin x \, dx = -du \). Substitute: \[ I_2 = \int \frac{-du}{(1 - u^2) u^2} \] 3. **Partial Fraction Decomposition**: We can express the integrand as: \[ \frac{-1}{(1 - u^2) u^2} = \frac{A}{u} + \frac{B}{1-u} + \frac{C}{1+u} \] Solving for \( A, B, C \) gives: \[ I_2 = -\int \left( \frac{1}{u} + \frac{1}{1-u} + \frac{1}{1+u} \right) \, du \] 4. **Integrate**: Each term integrates to: \[ I_2 = -\left( \ln |u| - \ln |1-u| + \ln |1+u| \right) + C \] 5. **Back Substitute**: Replace \( u \) back with \( \cos x \): \[ I_2 = -\left( \ln |\cos x| - \ln |1 - \cos x| + \ln |1 + \cos x| \right) + C \] ### Final Result for (ii): \[ I_2 = -\ln |\cos x| + \ln |1 - \cos x| - \ln |1 + \cos x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int sinx cos^2 x dx

I=int(sin2x-cos2x)^(2)dx

Evaluate: (i) intsec^2(7-4x)\ dx (ii) int1/(sin^2xcos^2x)\ dx

(i) int sin 2x. cos5x dx " "(ii) int(sin 4x)/(sin x) dx

int(sin2x)/((1+cos2x)^(2))dx

int(2+sin2x)/(1+cos2 x)dx

int (1-sinx )/ (1-cos x) dx=?

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

(i) int (cos x-x sin x)/(x cos x) dx " "(ii) int(1+ cos x)/(x +sin x)^3 dx

(i) int " x sec"^(2) " 2x dx "" "(ii) int " x sin"^(3) " x dx "