Home
Class 12
MATHS
int(1)/(5+4 cos x)dx...

` int(1)/(5+4 cos x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{5 + 4 \cos x} \, dx \), we can use the half-angle formula for cosine. Here’s a step-by-step solution: ### Step 1: Rewrite the integral using the half-angle formula The half-angle formula for cosine is given by: \[ \cos x = \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \] Substituting this into the integral, we have: \[ \int \frac{1}{5 + 4 \left( \frac{1 - \tan^2\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)} \right)} \, dx \] ### Step 2: Simplify the expression This simplifies to: \[ \int \frac{1 + \tan^2\left(\frac{x}{2}\right)}{5(1 + \tan^2\left(\frac{x}{2}\right)) + 4(1 - \tan^2\left(\frac{x}{2}\right))} \, dx \] \[ = \int \frac{1 + \tan^2\left(\frac{x}{2}\right)}{(5 + 4) + (5 - 4)\tan^2\left(\frac{x}{2}\right)} \, dx \] \[ = \int \frac{1 + \tan^2\left(\frac{x}{2}\right)}{9 + \tan^2\left(\frac{x}{2}\right)} \, dx \] ### Step 3: Change of variable Let \( t = \tan\left(\frac{x}{2}\right) \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{2}{1 + t^2} \, dt \] Substituting this into the integral gives: \[ \int \frac{1 + t^2}{9 + t^2} \cdot \frac{2}{1 + t^2} \, dt = 2 \int \frac{1}{9 + t^2} \, dt \] ### Step 4: Integrate The integral \( \int \frac{1}{9 + t^2} \, dt \) can be solved using the formula: \[ \int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \] Here, \( a = 3 \). Thus, we have: \[ 2 \cdot \frac{1}{3} \tan^{-1}\left(\frac{t}{3}\right) + C = \frac{2}{3} \tan^{-1}\left(\frac{t}{3}\right) + C \] ### Step 5: Substitute back Now, substituting \( t = \tan\left(\frac{x}{2}\right) \) back into the equation: \[ \frac{2}{3} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{3}\right) + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{1}{5 + 4 \cos x} \, dx = \frac{2}{3} \tan^{-1}\left(\frac{\tan\left(\frac{x}{2}\right)}{3}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(5+2 cos x)dx

int(1)/(7+5 cos x)dx=

int(1)/(5-4 sin x)dx

int(1)/(1-cos 2x) dx

int(1)/( 1+cos 2x ) dx

If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

Evaluate : int1/(1+cos x)dx

int_(0)^(pi) (1)/(5+2 cos x)dx

int_(0)^(pi//2) (1)/(4+3 cos x)dx

Evaluate int (dx)/((5+4cos x)^(2)) .