Home
Class 12
MATHS
int(x^2dx)/(4+x^2)...

`int(x^2dx)/(4+x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x^2}{4 + x^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integrand We start with the integral: \[ I = \int \frac{x^2}{4 + x^2} \, dx \] We can rewrite the numerator \( x^2 \) by adding and subtracting \( 4 \): \[ I = \int \frac{x^2 + 4 - 4}{4 + x^2} \, dx = \int \frac{x^2 + 4}{4 + x^2} \, dx - \int \frac{4}{4 + x^2} \, dx \] ### Step 2: Simplify the First Integral Now, we can separate the first integral: \[ I = \int \frac{x^2 + 4}{4 + x^2} \, dx - 4 \int \frac{1}{4 + x^2} \, dx \] The first part simplifies as follows: \[ \int \frac{x^2 + 4}{4 + x^2} \, dx = \int 1 \, dx = x \] because \( \frac{x^2 + 4}{4 + x^2} = 1 \). ### Step 3: Solve the Second Integral Now, we need to solve the second integral: \[ -4 \int \frac{1}{4 + x^2} \, dx \] We recognize that \( 4 \) can be written as \( 2^2 \), so we can use the formula for the integral of \( \frac{1}{x^2 + a^2} \): \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) \] In our case, \( a = 2 \): \[ -4 \int \frac{1}{4 + x^2} \, dx = -4 \cdot \frac{1}{2} \tan^{-1} \left( \frac{x}{2} \right) = -2 \tan^{-1} \left( \frac{x}{2} \right) \] ### Step 4: Combine the Results Putting everything together, we have: \[ I = x - 2 \tan^{-1} \left( \frac{x}{2} \right) + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result for the integral is: \[ \int \frac{x^2}{4 + x^2} \, dx = x - 2 \tan^{-1} \left( \frac{x}{2} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(x^2)/(1-x^4)dx

Evaluate the integrals int_0^2(dx)/(x+4-x^2)

int (x^(2))/(x^(2) +4) dx=?

Evaluate: int(x^2)/(x^4+x^2-2)\ dx

Evaluate: int(x^2)/(x^4+x^2-2)\ dx

Evaluate: int(x^2)/(x^4-x^2-12)\ dx

Evaluate: (i) int1/(a^2\ x^2-b^2)\ dx (ii) int(x^2-1)/(x^2+4)\ dx

Evaluate: int (x^(2))/(x^(2)-4) dx

Evaluate: int(x^2-1)/(x^2+4)dx

int( x^2+4)/(x^2+1)dx