Home
Class 12
MATHS
int( 1)/(sqrt(9x^(2)-1))dx...

`int( 1)/(sqrt(9x^(2)-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{9x^2 - 1}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the expression under the square root: \[ 9x^2 - 1 = (3x)^2 - 1^2 \] Thus, we can express the integral as: \[ \int \frac{1}{\sqrt{(3x)^2 - 1^2}} \, dx \] ### Step 2: Use the Standard Integral Formula We will use the standard integral formula: \[ \int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln |x + \sqrt{x^2 - a^2}| + C \] In our case, we have \( x = 3x \) and \( a = 1 \). ### Step 3: Substitute into the Formula Applying the formula, we get: \[ \int \frac{1}{\sqrt{(3x)^2 - 1^2}} \, dx = \ln |3x + \sqrt{(3x)^2 - 1^2}| + C \] ### Step 4: Simplify the Expression Now, we simplify the expression: \[ = \ln |3x + \sqrt{9x^2 - 1}| + C \] ### Step 5: Account for the Derivative of the Inner Function Since we used \( 3x \) instead of \( x \), we need to account for the derivative of \( 3x \) when we integrate: \[ \int \frac{1}{\sqrt{(3x)^2 - 1^2}} \, dx = \frac{1}{3} \ln |3x + \sqrt{9x^2 - 1}| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\sqrt{9x^2 - 1}} \, dx = \frac{1}{3} \ln |3x + \sqrt{9x^2 - 1}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(x^(2) -9))dx

int(dx)/(sqrt(1-9x^(2)))

Evaluate : int(1)/(sqrt(1-9x^(2))) " dx "

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(1)/((x-1)sqrt(x^(2)-1))dx equals

int(3x-1)/(sqrt(x^(2)+9))dx

int(dx)/(sqrt(9-25x^(2)))

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

int(dx)/(sqrt(1-5x^(2)))