Home
Class 12
MATHS
Evaluate: int1/(e^x+e^(-x))\ dx...

Evaluate: `int1/(e^x+e^(-x))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{e^x + e^{-x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{e^x + e^{-x}} \, dx \] We can rewrite \( e^{-x} \) as \( \frac{1}{e^x} \): \[ I = \int \frac{1}{e^x + \frac{1}{e^x}} \, dx = \int \frac{1}{\frac{e^{2x} + 1}{e^x}} \, dx \] This simplifies to: \[ I = \int \frac{e^x}{e^{2x} + 1} \, dx \] ### Step 2: Substitution Now, we will use the substitution \( t = e^x \). Then, the differential \( dt = e^x \, dx \) or \( dx = \frac{dt}{t} \). Substituting these into the integral gives: \[ I = \int \frac{t}{t^2 + 1} \cdot \frac{dt}{t} = \int \frac{1}{t^2 + 1} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{t^2 + 1} \, dt \) is a standard integral that evaluates to: \[ I = \tan^{-1}(t) + C \] where \( C \) is the constant of integration. ### Step 4: Back Substitute Now we substitute back \( t = e^x \): \[ I = \tan^{-1}(e^x) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{1}{e^x + e^{-x}} \, dx = \tan^{-1}(e^x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(1+e^(-x))\ dx

Evaluate: int1/(e^x+1)\ dx

Evaluate int1 +e^x dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/((1+e^x)^2)\ dx

Evaluate: int1/(2\ e^(2x)+3\ e^x+1)\ dx

Evaluate : int(1)/(e^(x)-1)dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))\ dx