Home
Class 12
MATHS
intsqrt((x+1)/(x-1))dx...

`intsqrt((x+1)/(x-1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sqrt{\frac{x+1}{x-1}} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral:** We start with the integral: \[ I = \int \sqrt{\frac{x+1}{x-1}} \, dx \] We can multiply and divide the integrand by \( \sqrt{x+1} \): \[ I = \int \frac{\sqrt{x+1} \cdot \sqrt{x+1}}{\sqrt{x-1}} \, dx = \int \frac{x+1}{\sqrt{x-1}} \, dx \] 2. **Separate the Integral:** We can separate the integral into two parts: \[ I = \int \frac{x}{\sqrt{x-1}} \, dx + \int \frac{1}{\sqrt{x-1}} \, dx \] 3. **Substitution for the First Integral:** For the first integral, we use the substitution \( t = x - 1 \) which implies \( x = t + 1 \) and \( dx = dt \): \[ I_1 = \int \frac{t + 1}{\sqrt{t}} \, dt = \int \left( \sqrt{t} + \frac{1}{\sqrt{t}} \right) dt \] 4. **Integrate Each Term:** Now we integrate each term: \[ I_1 = \int \sqrt{t} \, dt + \int \frac{1}{\sqrt{t}} \, dt \] The integrals can be computed as follows: \[ \int \sqrt{t} \, dt = \frac{2}{3} t^{3/2} + C_1 \] \[ \int \frac{1}{\sqrt{t}} \, dt = 2\sqrt{t} + C_2 \] Thus, \[ I_1 = \frac{2}{3} t^{3/2} + 2\sqrt{t} + C \] 5. **Substituting Back:** Replacing \( t \) back with \( x - 1 \): \[ I_1 = \frac{2}{3} (x-1)^{3/2} + 2\sqrt{x-1} + C \] 6. **Second Integral:** Now we compute the second integral: \[ I_2 = \int \frac{1}{\sqrt{x-1}} \, dx \] Using the substitution \( t = x - 1 \): \[ I_2 = \int \frac{1}{\sqrt{t}} \, dt = 2\sqrt{t} + C_3 \] Substituting back: \[ I_2 = 2\sqrt{x-1} + C \] 7. **Combine Both Integrals:** Finally, we combine both parts: \[ I = I_1 + I_2 = \left( \frac{2}{3} (x-1)^{3/2} + 2\sqrt{x-1} \right) + \left( 2\sqrt{x-1} \right) \] Simplifying: \[ I = \frac{2}{3} (x-1)^{3/2} + 4\sqrt{x-1} + C \] ### Final Result: Thus, the integral evaluates to: \[ I = \frac{2}{3} (x-1)^{3/2} + 4\sqrt{x-1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

intsqrt((a+x)/(x-a))dx

intsqrt((x-3)/(x-4))dx

intsqrt((1-x)/(1+x))dx

intsqrt((x-a)/(b-x))dx

intsqrt((e^x+1)/(e^x-1))dx (A) ln (e^(x)+sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (B) ln(e^(x)+sqrt(e^(2x)-1))+sec^(-1)(e^(x))+C (C) ln (e^(x)-sqrt(e^(2x)-1))-sec^(-1)(e^(x)) +C (D) ln(e^(x)+sqrt(e^(2x)-1))-sin^(-1)(e^(-x))+C

intsqrt((a+x)/(a-x)) dx

Evaluate: intsqrt((1-x)/(1+x))\ dx

Evaluate: intsqrt((a-x)/(a+x))\ dx

Evaluate intsqrt(x/(1-x))dx

Evaluate intsqrt((a-x)/x)dx